Finite State Machine Approach to
Digital Event Reconstruction

Pavel Gladyshev and Ahmed Patel

Department of Computer Science,
University College Dublin,
Belfield, Dublin 4, Ireland
pavel @gladyshev.info , ahmed.patel @ucd.ie

Abstract

This paper presents a rigorous method for reconstructing eventsin digital systems. Itis
based on the idea, that once the system is described as a finite state machine, its state space
can be explored to determine all possible scenarios of the incident. To formalize evidence,
the evidential statement notation isintroduced. It represents the facts conveyed by the
evidence as a series of witness stories that restrict possible computations of the finite state
machine. To automate event reconstruction, a generic event reconstruction algorithm is
proposed. It computesthe set of all possible explanations for the given evidential statement
with respect to the given finite state machine.

Keywords. digital, forensics, event, reconstruction, algorithm, state machine

1 Introduction

A sound forensic analysisis expected to rely on a credible scientific theory that explains why
and how expert conclusions follow from the available evidence. Digital forensic analyzes are
currently lacking such atheory. To improve this situation, this paper demonstrates how finite
state machines can be used to formalize event reconstruction in digital investigations. It
gives mathematical definition of the event reconstruction process and proposes a generic
event reconstruction algorithm based on that definition.

Consider the following idea. Many real-world digital systems, such asdigital circuits,
computer programs, or network protocols, can be described mathematically as finite state
machines. A finite state machine can be depicted as a graph, whose nodes represent possible
system states, and whose arrows represent possible transitions from state to state (see Figure
1). All possible computations leading to a particular state can be determined by back-tracing
transitions leading to that state. In theory, the investigator could perform event
reconstruction as follows:

1. Obtain afinite state model of the system under investigation.

2. Determine all possible scenarios of the incident by back-tracing transitions from
the state in which the system was discovered.

3. Discard scenarios that disagree with the available evidence.

Thisvague ideais generalized and clarified in the rest of this paper. The presentation is
organized into four sections. Section 2 illustrates the key concepts of the proposed

1

Transition graph of a single-bit memory cell

write 1

write O M write 1

Event reconstruction by back-tracing transitions

o write O

write O
write 1

write O write O
a final state

write 1

Figure1l. Event reconstruction by back-tracing transitions

reconstruction approach on asimple analysis example. Section 3 formalizes the concepts
introduced in Section 2 and gives rigorous definition of the event reconstruction problem.
Section 4 describes a generic event reconstruction algorithm based on that definition.
Finally, Section 5 puts the work in the context of related research, discussesits possible
applications and possibilities for further development.

2 Informal example of state machine analysis

This section illustrates the proposed event reconstruction approach by using it on afictional
example of networked printer analysis. First, aninformal analysisis given, thenit is repeated
using afinite state model of the printer.

2.1 Investigation at ACME Manufacturing

The dispute. Theloca area network at ACME Manufacturing consists of two personal
computers and a networked printer as shown in Figure 2. The cost of running the network is
shared by itstwo users Alice (A) and Bob (B). Alice, however, claimsthat she never usesthe
printer and should not be paying for the printer consumables. Bob disagrees, he says that he
saw Alice collecting printouts. The system administrator, Carl, has been assigned to
investigate this dispute.

Figure2. ACME Manufacturing LAN topology

The investigation. To get more information about how the printer works, Carl contacted the
manufacturer. According to the manufacturer, the printer works as follows:

1. When aprint job is received from the user it is stored in the first unallocated
directory entry of the print job directory.

2. The printing mechanism scans the print job directory from the beginning and picks
thefirst active job.

3. After thejob is printed, the corresponding directory entry is marked as “deleted” ,
but the name of the job owner is preserved.

The manufacturer aso noted that
4. The printer can accept only one print job from each user at atime.
5. Initialy, all directory entries are empty.

After that, Carl examined the print job directory. It contained traces of two Bob's print jobs
and the rest of the directory was empty:

job from B (deleted)
job from B (del eted)
empty
empty
empty

The analysis. Carl reasons asfollows. If Alice never printed anything, only one directory
entry must have been used, because printer accepts only one print job from each user.
However, two directory entries have been used and there are no other users except Alice and
Bob. Therefore, it must be the case that both Alice and Bob submitted their print jobs at the
sametime. Thetrace of the Alice's print job was overwritten by Bob's subsequent print jobs.

In the next subsection, it is shown how the same conclusion can be mechanically derived

from the finite state model of the print job directory.

2.2 State machine analysis of the ACME investigation

Please look at Figure 3. It shows afinite state model of the print job directory. Ellipses
correspond to possible states of the directory. Arrows correspond to addition (or deletion) of
print jobs.

Each ellipse in Figure 3 shows the content of the print job directory in the corresponding
state. For the sake of simplicity, only the first twodirectory entries are modeled. For
example, the elipse (A,B) represents the state in which directory contains an active job from
Alice, and an active job from Bob:

job from Alice

job from Bob
empty
empty
empty

Theinitial state of the directory corresponds to the ellipse (g,€). The state discovered by Carl
corresponds to the ellipse (B,K). Any possible scenario of the incident corresponds to a path
from (e,e) to (B,B). All such scenarios can be found by back-tracing transitions leading into
(®,R), or equivalently, by forward-tracing transitions from (e,e).

The Alice's clam that she never printed anything corresponds to a path from (e,e) to (B,K)
that does not have states with “A” in them. By forward-tracing transition from (e,e), one can
ensure that any path from (e,e) to (B,K) has to go through either (A,B) or (B,A) state, which
means that Aliceis lying.

2.3 Theneed for formal statement of event reconstruction problem

The example presented in this section shows that the rigor and objectivity of digital forensic
analysis can be improved by using formal methods of computer science. However, formal
analysis ismore labor intensive than informal analysis, because additional effort is required
for formalizing the system under investigation. On the other hand, the exploration of
possible computations can be automated, thus, speeding-up formal analytical process.

Any tool for automation of forensic analysis will rise the question of its correctness. But
before the tool's correctness can be proved, it is necessary to define precisely what it means
for atool to be correct. To answer this question, the next section proposes aformal definition
of event reconstruction problem—aformal statement of what is the correct outcome of event
reconstruction for the given evidence and digital system.

3 Formalization of event reconstruction problem

This section formally defines the event reconstruction problem. It is based on the idea that
the knowledge used by forensic expert to reconstruct past eventsin adigital system can be
divided into two categories.

Knowledge of the system functionality — the expert knowledge

directory directory

TLIX

State structure:

entry1l y entry?2

Directory entry values: Events:
empty .
print job from A add Pb from A (A)
print job from B add job from B (B)
deleted print job from A take next job (><)
deleted print job from B

Figure 3. Transition graph of the print job directory model

Evidence — description of the system's final state and clues to the system's behavior
in the past, such as witness statements, printouts, etc.

The proposed theory formalizes the knowledge of the system functionality as a finite state
machine and defines evidential statement notation for describing the evidence and
investigative assumptions. The event reconstruction problem is then defined as finding all
possible explanations for the given evidential statement with respect to the given finite state
machine.

3.1 Notation

Sets are denoted by capital Roman letters A,B,C..
Set of integersis denoted YA

Empty set is denoted i)

Sets are defined either by explicit enumeration A={a,b,c}
or by a set former A={x [P(x)]
Set product of A and B isdenoted AXB

The n" powerof set A isdenoted A"
The powerset (the set of all subsets) of set A isdenoted 2*

Symbols 2,0,2,c,uU,Nn,&,e areusedintheir usual mathematical meaning.

Sequences are denoted by lower case letters a,b,c,d...
Sequences are defined by listing their elements s=(1,2,3)

Empty sequence is denoted 3

The length of sequence s isdenoted |s|

Elements of sequence s aredenoted S ,where 0O<i<|g],ieZ
Head of sequence s isitsfirst element S

Tail of sequence s istherestof s (81,S,,...S¢1)
Concatenation of sequences s and (isdenoted s.q

Function ¢ thatmapsset A intoset B isdenoted 6:A—B

3.2 Finite state machine
Finite state machineis a sequence of four elements T=(Q,Il,¢,q) ,where

| isafinite set of all possible events,
Q isafinite set of all possible states,

¢ 1 XQ—Q isatransition function that determines the next state for every
possible combination of state and event,
g € Q isthe current system state

Transition is the process of state change. Transitions are instantaneous.

A (finite) computation is a non-empty, finite sequence of steps ¢=(c,, C;, - ’C\c|—1)
, Where each stepisapair ¢;=(c,c]) ,where cjel isevent, cl€Q isastate,
and any twosteps C, and C,_; are related viatransition function:

forall k ,suchthat 1<k<lc| , c}=¢(c,,, c} ;)

The set of all finite computations of the finite state machine T isdenoted C;

3.3 Run

To formalize transition back-tracing, the concept of run isdefined. A runisapossibly empty
sequence of finite computations, in which the next computationis obtained from the previous
computation by discarding itsfirst element. Please look at Figure 4, which graphically
illustrates this concept.

Computation ¢

initial state final state
S !
P \ N
Run of computatlon C
initial computation (c) final computation

e

m

Figure 4. Run of computation

Arunisaseguence of computations r € (CT)‘r| ,suchthatif r isnon-empty, itsfirst
element isacomputation r, € C; ,andforal 1<i<|r| , r, = y(r,_,) ,where
function ¢ discardsthefirst element of the given computation.

For two computations X€C; and Y€C; , y=w(x) ifandonlyif x=X,.Yy
The set of all runs of the finite state machine T isdenoted R; .
The run of computation ¢ isarun, whose first computationis ¢ .

Observethat any run r iscompletely determined by itslength and its first computation.

3.4 Partitioned run

Partitioned runisafinite sequenceof runs pr € (RT)‘prl , such that concatenation of its
elementsin the order of listingisalsoarun: (pr, . pr, . pr, .- . Prio1) € Ry -

Set of all partitioned runsisdenoted PR; .

A partitioning of run r € R; isapartitioned run denoted pr, , such that concatenation
of its elements produces r

(prro S Preg s Preg e prr|pr,|—1) =T

3.5 Formalization of back-tracing

Theinverseof ¢ isfunction ¢ *: CT—>2CT . For any computation y € C; it
identifies a subset of computations, whose tailsare y :

foral xe gy , y=v(x)

In other words, ' back-traces the given computation.

Although function ' can be used to formalize back-tracing, it isinconvenient, because it
takes a single computation and produces a set of computations. Asaresult, it cannot be
applied to its own output. A more convenient alternativeis function ¥ ':2“—2% | which

Isapplied to a set of computations:
Y yeY
forY € C,, Y '(Y)= U ¢ '(y)
The meaning of functions w , ¢~ ,and ¥ isillustrated in Figure 5.

Back-tracing of computations is defined as a finite number of compositionsof ¥~ ' with
itself applied to a subset of computations.

Additional convenience of function ¥ isthat it's software implementation can manipulate
implicit symbolic descriptions of computation sets, whereas implementation of "
requires explicit representation of computations.

y

DD

Gicro)
D-DQ | —
-O-OF

/

o)l
O-@-OH
o) |

[©fozo) T

@@ /

-

Figure5. Functionsy, *, and ¥

3.6 Formalization of evidence

In away, every piece of evidencetellsits own “story” of theincident. The aim of event
reconstruction can be seen as combining stories told by witnesses and by various pieces of
evidence to make the description of the incident as precise as possible. This story-oriented
view of event reconstruction is the basis of evidence formalization presented below.

3.6.1 Observation

Observation is a statement that system behavior exhibited some property p continuously
for sometime. Formally, itisdefined asatriple o = (P, min, opt) , where

P istheset of al computationsof T that possess observed property, min and opt are
non-negative integers that specify duration of observation.

An explanation of observation o0 isarun r€R; such that every element of run r
possesses observed property: foral O<i<]r|, r; € P ,andthelengthof run r satisfies
min and opt : min <|r| < (min+opt) .

The meaning of observation o istheset R, & R; of all runsthat explain o .
Observations can be divided into several types:

Fixed length observation is observation of theform (P,x,0) . Any run
explaining it haslength x .

Zero-observation is observation of theform (P ,0,0) . The only run explaining
it isthe empty sequence ¢

No-observation is observation $ = (C;, O, infinitum) that puts no restrictions
on computations that could have happened during the incident. The infinitum is
an integer constant that is greater than the length of any computation that may have
happened during the incident.

3.6.2 Observation sequence

An observation sequenceis a non-empty sequence of observations listed in chronological
order:

os=(observation,, observationg, observation, ...)

An observation sequence represents uninterrupted eyewitness story. The next observation in
the sequence beginsimmediately when the previous observation finishes. Gaps in the story
are represented by no-observations.

An explanation of observation sequence o0s isapartitioned run pr such that
Thelengthof pr isequal tothelengthof os : |pr|=|os| ,andeacheementof pr
explains the corresponding observationof 0S : foral 0<i <los|, pr.e Ros

Note that the same run can explain the same observation sequence in anumber of ways, each

10

os=((P, 1, infinitum), (P,, 1, infinitum))
P (8) (8)
AUEINEINEDS

run = .».*.ﬁ(}’[J

e (D () . ({5 »
eptnsion,= (S} +(s) . (S} +(5}+(5)

Figure 6. A run that givestwo explanations of the same observation sequence

corresponding to a different partitioning of the run. Figure 6 illustrates this possibility of
multiple explanations.

The meaning of observation sequence os istheset PR < 2R of all partitioned runs
that explain os .

A run r satisfiesan observation sequence os if and only if there exists a partitioning of
r that explains os . There may be more than one partitioning of r that explains os .

A computation ¢ satisfiesan observation sequence os if and only if thereisarun r
that satisfies os and r,=c .

3.6.3 Evidential statement
Evidential statement is a non-empty sequence of observation sequences

es = (0S,, 0Sg, ,08:, ***)
Evidential statement combines restrictions imposed by all of its observation sequences—a
computation satisfying one observation sequence must also satisfy all other observation
sequences in the evidential statement.

An explanation of evidential statement es isasequence of partitioned runs spr , such
that all elementsof spr are partitionings of the same run:

11

oo - Pros - = - Plojspe-1 =
= o - Pryg - - Plyjgpe-1 =

= PMes-1,0 - Spr\ee\—l,l'- s Pes-n fspe-1 = T
and thelength of spr isequal to thelength of es
|spr| = |es|
and each element of spr explains corresponding observation sequenceof es :

foral O<i<les

, Spr € PR&;I

The meaning of evidential statement es isthe set of all sequences of partitioned runs
PR S (PR XPRgX -+ XPRy_) that explain es .

Evidential statement isinconsistent if it has empty set of explanations SPR.=0 .

Figure 7 illustrates the rel ationship between the evidential statement and other formal notions
introduced in this section.

3.6.4 Definition of event reconstruction problem

In terms of the above defined formalization of evidence, event reconstruction problem is
defined as calculating the meaning SPR, of the given evidential statement es with
respect to the given finite state machine T .

3.7 Formalization of event reconstruction: An example

To illustrate the use of formal machinery defined above, this section formalizes event
reconstruction problem for the example investigation described in Section 2.

Formalization of system functionality. First, it isnecessary to define a state machine that
describes the functionality of the printer that was investigated by Carl at the ACME
Manufacturing. Such a state machine was given in Figure 3. It's set of possible statesis
defined as

DIR={A ,B,A_deleted ,B_deleted , empty |
Q=DIRXDIR

Notethat in Figure 3, “A_deleted” isdenoted asKX'B_deleted” is denoted as K, and “ empty”
Is denoted ase.

The set of possible eventsisdefinedas | ={add A ,add B,take| . Notethatin Figure 3,
events are shown on the arrows. Event “add_A” isdenoted as“A”, event “add_B” is denoted
as“B”, and event “take” isdenoted asa“X”.

Transition function ¢:1xXQ—Q isgraphically defined asfollows. For every event

12

Sequence of partitioned runs Evidential statement

— - explains

Partitioned run | Observation sequence

explains |
[SR } s) -)

Run Observation

[A ’[observed property J

Computation

[event state ev ent State]

Figure 7. Evidential statement and related notions

t €l andstate (x,y) € Q ,Figure3definesthenext state (x',y')=¢(t,(X,y)) by
the arrow that leadsfromoval (x,y) tooval (x',y') andislabeledwith « .

Formalization of evidence. First, consider properties observed by the witnesses. Theinitia
state of the print job directory, which was observed by the printer manufacturer, is described
by the property

Poy = (€] € € Cr , cp=(empty ,empty) |

empty

which says that both directory entries at the moment of observation are empty. The final
state of the printer, which was observed by Carl during printer examination, is described by
the property

[c|cecC,, cl=(B ddeted,B_deleted) |

PB_deleted =

which says that both directory entries at the moment of observation contain deleted print jobs
from Bob.

13

The complete “stories’ told by Carl and the printer manufacturer are captured by two
observation sequences. The first observation sequence describes Carl's story:

0Scan = ((Cy,0, infinitum), (Pg ggee»1,0))

it saysthat Carl observed nothing about the state of the print job directory, until he examined
the printer and found that both directory entries contained deleted print jobs from Bob.

The manufacturer story isthat, initially, all directory entries were empty, but then the printer
was sold and nothing was observed about its subsequent states:

OSpanufacturer = ((Peﬁptyilio)! (CT ,0, Inflnltum))
These observation sequences form the evidential statement

esACME = (OSCarh Osmanufacturer)

The evidential statement combines the knowledge contained in the two observation
sequences. The task of event reconstruction isto find all computations that satisfy both
observation sequences simultaneoudly.

3.8 Testing investigative hypotheses by including them into evidential statement

The purpose of event reconstruction isusually to prove or disprove some claim about the
incident. To show that the claim may be true, the investigator has to show that there are some
explanations of evidence that agree with the claim. To disprove the claim, the investigator
has to show that there are no explanations of evidence that agree with the claim.

In the investigation described in Section 2, the claim is that Alice never printed anything. To
formally disprove that claim, the investigator has to show that all explanations of the
evidential statement €S,qye iNvolve Alice printing something at one point or another. A
straightforward approach would be to compute all possible explanationsfor €Spcye and
check them all manually. However, this approach isimpractical when the number of
explanationsislarge. An alternative approach isto formulate the claim as an observation
sequence, include it into the evidential statement, and try to find explanations that agree with
both the evidence and the claim.

For example, Alice's claim can be formalized as observation sequence, which saysthat Alice
did not print anything until Carl examined the printer:

Paie = C|lC € Cy, cp#add A}
OsAIice = ((PAIice101 inﬁnitum)! (PB_deIeted’]'!O))

The extended evidential statement for the ACME investigation isthen

eSIACME = < OSAIice’ OSCarI’ Osmanufacturer)

14

If there are explanationsof €S',cue they must agree with both the evidence and the Alice's
claim, which means that the claim may betrue. If there are no explanationsof €S',cye but
there are some explanationsof €S,cye the claim must be false, because it makes evidential
statement inconsi stent.

4 Event reconstruction algorithm

This section describes an algorithm for computing the meaning of the given evidential
statement with respect to the given state machine. The algorithm is presented in four steps.
First, aprocedure for computing the meaning of fixed-length observation sequencesis
presented. Second, a procedure for computing the meaning of generic observation sequences
is presented. Third, it is shown how the meanings of individual observation sequences can be
combined into the meaning of the evidential statement. Finally, a*“ proof-of-concept”
implementation of the algorithm in Common Lisp is described.

4.1 Computing the meaning of sequences of fixed-length observations

Recall function ¥ *:2“—2% introduced in Section 3.5. It takes a set of computations

Y e€2“ and produces the set of all computations, whosetailsarein Y . In other words, it
returns all possible back-tracings of computationsin Y .

Function ¥~ provides basic operation for automation of back-tracing. Together with set
intersection, it can be used to calculate the meaning of observation sequences that consist of
fixed-length observations only. Theideaisto take the set of all computations C; asthe
starting point and iteratively back-trace it into the past using ¥ ' . At each step,
computations that do not possess observed property are discarded. Thisis achieved by
intersecting the set of back-tracings with the set of computations that possess property
observed at the current step. The result of intersection isthen used as input for the next

invocation of ¥ , and so on. The process continues until either all observations are

explained, or the set of computations becomes empty. Please look at Figure 8, which
illustrates this process for observation sequence

example = ((A,3,0), (B,2,0))

If the set of computations produced at the last step of reconstruction is non-empty, its
elements satisfy observation sequence example by construction. The set of partitioned runs
PRoamie that explain example can be generated from these computations using function

¢ and the fixed length of observationsin example .

A map of partitioned runs (MPR) is arepresentation for a set of partitioned runs. Itisatuple
pm = (len,C) where C istheset of initial computations, len isasequence of

partition lengths. A single MPR represents the set of al partitioned runs whose initial

computationisin C , and whose partitions have lengths len, len, -~ len,,, ; .

Observe that the meaning of afixed length observation sequence can be expressed by asingle
MPR.

15

Reconstruction steps.
step5 sepd Step3 sep2 Sepl

il

| | | | |
example = ((A 3.0), (. B.2,0))

Computations that
- possess property A

Computations that
possess property B

BAW*(BNC,)
Y- (BNW *(BNC,))

ANW 1 (BNW 1 (BNC,))

W (ANW H(BNW I (BNC))))

ANY L (ANW Y (BNW 1 (BNC))))

W (ANW (AW H(BNW ' (BNC))))

Final: Aﬂq-"1(AQ‘P'1(Aﬂ‘P'l(Bﬁ‘P'l(BﬁCT))))

Figure 8. Finding explanations of a fixed-length observation sequence

16

4.2 Computing the meaning of generic observation sequences

The reconstruction process described above works, because the property observed at every
step isknown. Thisis because the length of run satisfying afixed length observation is equal
to the observation's min parameter. For ageneric observation o=(P,min,opt) |,

whose opt # 0 , thelength of explaining runis not fixed, but is bounded between min
and min+opt . Asaresult, single observation sequence represents many variants of
linking observed properties to reconstruction steps. Consider, for example, observation
sequence example2 = ((A,1,3), (B,1,2)) , which saysthat

initially, property A was observed for at least 1 and at most 4 step,
then property B was observed for at least 1 and at most 3 steps.

This observation sequence represents twelve possible variants of linking propertiesto
reconstruction steps:

AB ABB ABBB
AAB AABB AABBB
AAAB AAABB AAABBB
AAAAB AAAABB AAAABBB

Every one of these variants can be represented by a fixed-length observation sequence. Note
that the meaning of example2 isthe union of explanations of each variant. Thus, the
meaning of example2 can be calculated asfollows:

1. Convert example2 to aset of fixed-length observation sequences.

2. Caculate the meaning of each fixed-length observation sequence in as described
above.

3. Calculate the union of explanations of the fixed-length observation sequences.

Observe that the meaning of example2 can be represented as a set of MPRs— each MPR
representing the meaning of one of the fixed-length observation sequences.

4.3 Computing the meaning of evidential statement

The meaning of an evidential statement can be computing using a two-step procedure. First,
the meanings of individual observation sequences are computed as described in the previous
sections. Then the meanings of observation sequences are combined into the meaning of the
entire evidential statement.

To combine the meanings of observation sequences, note that, to satisfy the evidential
statement, a run must satisfy all of its observation sequences. Thus, the problem isto
identify the subset of runs, whose partitionings are present in the meanings of all observation
sequences.

Let pm,=(len,, C,) and pm,=(len,,C,) betwoMPRs. Arun r can be partitioned
by both pm, and pm, if and only if two conditions hold:

17

1. theinitial computation of run r belongstoinitial computation sets of both MPRs:
r,€C, and ro,€C, ,and
2. both MPRs have equal total number of computation steps: X'len, = Xlen, .

If Xlen, # Xlen, ,thenthetwo MPRs have no common runs. Otherwise, the common
runs are determined by the common set of initial computations C, N C,, .

A map of sequence of partitioned runs (MSPR) mspr = ((len,, len;, --- ,len,), C) isa
representation for a set of sequences of partitioned runs. C isthe set of initial

computations, and leny, -+ len, arelists of lengths that describe how to partition runs
generated from the elementsof C . MSPRisproper if and only if
Xlen, = Xlen, = .- = Jlen, .

The combination of two MPRsis defined by function comb that takes two MPRs and
returns a proper MSPR:

2 if Zlen,#Slen, or C,NC,=0

comb(pm,, pm,) = i
(p o P y) ((|enx’ |eny), mecy) , otherwise

Suppose that the meanings of two observation sequences 0S, and 0S, are represented
by two setsof MPRscalled PM, and PM, respectively. The meaning of evidentia
statement es=(0s,, 0S,) isexpressed by the set of proper MSPRs, which is obtained by
combining every MPR from PM, with every MPR from PM, :

V xePM,, VyePM,, SPM = U comb(x,Yy)

This process can be extended to arbitrary number of observation sequences, thus providing a
way to calculate meaning of an arbitrary evidential statement.

Implementation note. The computation method described above has been deliberately made
inefficient to clarify the concepts underlying it. If observations havelarge opt parameters,
it will generate large number of fixed-length observation sequences, which may overflow
computer memory. To address this problem, generation and reconstruction of fixed length
observation sequences can be combined into a single process, which constructs fixed length
observation sequence only as far as necessary to perform the next reconstruction step. It
might also be possible to devise problem-specific checks that detect and abandon fruitless
back-tracings early in the reconstruction process.

4.4 1mplementation of the algorithm

The algorithm described above has been implemented with minor modifications as a“proof -
of-concept” Common Lisp program, whose source codeis given in the Appendix. The
program can compute meanings of evidential statements about the print job directory model
from Section 3.7. It was developed using CMU Common Lisp18c running on a Pentium PC.
The following sections describe program interface and its application to the example analysis
from Section 2.

18

4.4.1 Overview of the program interface

The program provides a set of constants, macros, and functions for defining observation
sequences, computing their meaning, combining the meanings of observation sequences into
meanings of evidential statements, and visualizing the meanings of evidential statements.

Observed properties are defined using two macros: def pr op1 and def pr op2.

Macro (def propl nanel (c0) expl) definesconstant with namenanel that
represents the set of computations, whose first element c0 satisfieslogical expressionexpl.
Formally, it defines property of theform P, = {C|Cc € C; , expl(c,) | . For
example, property Pg seed that describesthefinal state of the printer is defined asfollows

(def propl *B DELETED* (x)
(and (equal (first (second x)) 'B deleted)
(equal (second (second x)) 'B deleted)))

Macro (def prop2 nane2 (cO cl) exp2) definesconstant with namenane?2 that
represents the set of computations, whose first element c0 and second element c 1 satisfy
logical expression exp2. Formally it definesproperty P.w=|clc€EC:,exp2(c,,cC;)}

Observation sequences are represented by Lisp lists. Observation sequences 0Sc,
and OS,nuacurer TYOM Section 3.7 can be defined as follows

(defvar *CARL* “((,*C.T* 0 ,*inf*) (,*B_DELETED* 1 0)))
(defvar *MANU* " ((,*EMPTY* 1 0) (,*C_T* 0 ,*inf*)))

where* C_T* represents C; , *i nf * represents infinitum ,*B_DELETED* represents
property Pg geee » ad * EMPTY* represents property Pepyy -

The meaning of observation sequenceis computed using function sol ve- os. It takesan
observation sequence as input and returns a list of MPRs that describes the meaning of the
given observation sequence. For example, the meaning of 0S¢, iscomputed by

(sol ve-os *CARL*)

The meanings of evidential statement is combined from meanings of individual observation
sequences using functionssi ngl et on- es- sol and add- sol . Function si ngl et on- es-
sol transformsthe meaning of a single observation sequence 0s into the meaning of
singleton evidential statement es = (0s) . Function add- sol takes the meanings of
observation sequence 0s and evidential statement es to produce the meaning of
combined evidential statement os.es . For example, the meaning of €S,cye 1S computed
by the following code

(defvar *SOL- CARL* (solve-o0s *CARL*))
(defvar *SOL- MANU* (sol ve-os *MANU*))
(add-sol *SOL- MANU* ('si ngl et on-es-sol *SOL- CARL*))

To visualize the meaning of evidential statement, function dr awis provided. It takesthe
meaning of evidential statement and creates atree of possible scenarios. An exampletreeis

1 Theoutput of dr awisafilefor DOT utility [4]. The latter should be manually invoked to draw the tree.

19

AADELETER upp g

U

Figure 9. Sample output of the program. It papershows all computationsending in
(B_deleted, B_deleted) that do not contain repetitive transitions and
transitions caused by event “Add_A”"

shown in Figure 9.

4.4.2 Automated analysis of the ACME investigation

The code that automates analysis of the ACME investigation is given in the Appendix on
page 27. It computes the meanings of two evidential statements. One evidential statement
describes only the evidence. The other evidential statement describes the evidence and the
Alice's claim that she never used the networked printer. These statements correspond to the
evidential statements €Spoye and €S',oue from Section 3.8. The meanings of the two
evidential statements are stored into variables* SOL- ES- ACME* and * SOL- ES- PRI MED-
ACVE* respectively.

When the program stops, it can be manually verified that * SOL- ES- ACME* contains some
explanations while * SOL- ES- PRI MED- ACMVE* isempty. It meansthat, addition of Alice's
claim into consistent evidential statement €S,cye produced an inconsistent evidential

statement €S',cve , Which means that Alice must be lying.

The problem of speculative transitions. Initial attempts to automate analysis of ACME
investigation has shown that the presence of loops in the transition graph dramatically
decreases the performance of the program given in the Appendix. The problem is caused by
speculative transitions — transitions that may or may not have happened.

An example of speculative transition is an attempt of the printing mechanism to take the next
print job from the empty print job directory. Such transition does not change the state of the
print job directory, because the directory is empty. However, if thereis no evidence that it
did or did not happen, there is no reason to believe that it never happened, or that it happened
once, twice, or moretimes. Every such possibility corresponds to a separate explanation of
the evidential statement.

The impact of the problem was reduced by exploiting the nature of the hypothesis being
tested. The hypothesisisthat Alice never printed anything. The truth or falseness of that
statement is not affected by how many times sequences of transitions are repeated.
Reflecting thisinsight, the analysis has been restricted to computations in which speculative
sequences of transitions happen at most once. To achieve this, two additional observation

20

sequences have been added.

5 Discussion and Conclusions

Although the field of digital forensic scienceisrapidly maturing, few publications to date
explored the use of formality for analysis and corroboration of digital evidence. The major
developmentsinclude

asemi-formal classification of uncertainties accompanying digital evidence, and a
method for reasoning about there uncertainties [2];

the view of digital forensic tools as trandators of information between different
layers of abstraction inherent in computer software, and away of defining such
tools[1];

the analysis of the possibility of using formal description of file systems for
extracting data from binary images of disk drives|[3];

ademonstration that it is feasible to describe the outcome of investigation using a
rigorous formal notation (colored petri nets) [5].

This paper contributed to this growing body of knowledge a demonstration that event
reconstruction and hypothesis testing in digital investigations can be performed with
mathematical rigor and objectivity. It provided explicit formalization of the link between the
evidence, the model of digital system, and the possible scenarios of the incident. Based on
that formalization, it presented an algorithm for computing possible scenarios of the incident
and for testing investigative hypotheses. These results provide formal basis for the
development and verification of forensic analysis tools. However, more development is
required for the presented ideas to benefit everyday investigations. Some of the possible
developments are discussed below.

5.1 Possible applications of the proposed reconstruction approach

The most straightforward application of the proposed event reconstruction approach isthe
development of a general-purpose event reconstruction tool along the lines of the program
given in the Appendix. When using such atool, the human investigator would provide the
formal description of the digital system, the evidence, and the investigative hypotheses. The
tool would calculate and visualize possible incident scenarios consistent with the given
formal description. Therigor offered by such atool would be welcome in investigations
where reliability and comprehensiveness of event reconstruction are crucial to the success of
subsequent legal action.

Another possible application of the proposed event reconstruction approach is proving
correctness of existing forensic analysis techniques. Many advanced digital forensic
technigues can be viewed as special cases of event reconstruction. For example, the recovery
of deleted files can be viewed as reconstruction of eventsin the file system up to the moment
when the given file was deleted. Such specialized event reconstruction can be defined (with
respect to the file system model) by the evidential statement

es, = (a,, &, -+, &, ($,(x,1,0)))

21

where (x, 1, 0) formalizesthe knowledge of the system's final state, and observation
sequences @, -+ @, formalize assumptions made by the technigque's designers.
To prove the technigue's correctness one should prove that for all possible final states, the

meaning of €S, islinked to the technique's output out, according to some well defined

interpretation relation %

foral x, SPR 2 out,

Theinterpretation relation £ canbethat out, isequal to some part of PR, ,or

that it can be derived from SPRy by some function. To perform such proofs, a suitable
body of lemmas should be devel oped.

5.2 Further formalization of event reconstruction

The proposed formalization of event reconstruction has captured the basic sense of event
reconstruction — the reconstruction process must find all possible sequences of events that
agree with the evidence. Although finding the sequence of eventsis fundamental, there are
many other characteristics of eventsthat may be interesting to the consumer of investigation.
For example, the consumer might want to know the odds of a particular investigative
hypothesis, or the likely real times of reconstructed events. To compute answers to such
questions, the formalization of event reconstruction has to be extended with additional
attributes that describe statistical and real-time properties of the system and incident. The
possibility of such extensions will be researched and published in future papers.

6 References

1. Carrier, B. “Defining Digital Forensic Examination and Analysis Tool Using Abstraction
Layers’, , International Journal of Digital Evidence vol. 1, no. 4, Economic Crime
Institute, at Utica College, Utica, USA, 2003.

2. Casey, E. “Error, Uncertainty and Loss in Digital Evidence” , International Journal of
Digital Evidencevol. 1, no. 2, Economic Crime Institute, at Utica College, Utica, USA,
2002.

3. Geber, M.B., Leeson, J.J. “ Shrinking the Ocean: Formalizing 1/0 Methods Modern
Operating Systems’, International Journal of Digital Evidence vol. 1, no. 2, Economic
Crime Institute, at Utica College, Utica, USA, 2002.

4. Gansner, E., North,S.C. “ An open graph visualization system and its applications to
software engineering”. Software Practice and Experience, 1999.

5. Stephenson, P. “Modeling of Post-Incident Root Cause Analysis’, International Journal of
Digital Evidenceval. 2, no. 2, Economic Crime Institute, at Utica College, Utica, USA,
2003.

22

Appendix

;1. Hel per functions
append given suffix to each el ement
; of given list. Return the list of results
(defun conbine (Ist suff)
(if (atomlst)
ni |
(cons (cons (car Ist) suff)
(conbine (cdr Ist) suff))))

; append elements of |2 to elenent of |1
; in all possible conbinations
(defun product (11 12)
(if_l(atomIZ)
ni
(append (conbine 11 (car 12)) (product |11
(cdr 12)))))
; convert each element of given list into
; singleton |ist
(defun listify-elenents (I)
(if (at0m|¥
ni |
(cons (list (car 1))
(listify-elenents (cdr 1)))))

Test if given object
; not an integer
(defun zp (x)

(if (integerp x) (eq x 0) t))

is integer zero or

;2. Transition function

(de;‘un std(lc fs‘)
t t
et ({8 tecona™)))
(cond ((equal c 'add_A)
(if (or (equal
(equal

di ' A)
d2 ' A))

s
(if (or (equal di 'errpty)

(equal dl1 'A del eted)
(equal d1 'B_del eted))
(list "A d2)
(if (or (equal d2 'enpty)
(equal d2 ' A del eted)
(equal d2 'B_deleted))
gy Y
s
((equal c 'add_B)
(if (or (equal dl1 'B)
(equal d2 'B))

s
(if (or (equal di 'errpty)
(equal dl1 'A del eted)
(equal di1 'B _del eted))

(list "B d2)

(if (or (equal d2 'enpty)
equal d2 'A deleted
equal d2 'B_del eted))

(list d1'B)
s))))

q
t ' A del et ed d2)
(equal d1

st ' B_del eted d2)
(equal d2 A)

ist dl ' Adel et ed)
(equal d2 B)

ist dl 'B_del eted)
)))

(t s))))

; 3. Inverse transition function
(defun rev-st (s)
(let ((dl (first s))
(d2 (second s)))
(append

(1f (equal dl 'A deleted)

t (list

qual dl1 'B_del eted)
t (list "take (list

"take (list 'A d2)))

"B d2)))

nd (not (equal di ‘' A))
not (egual di '
equal 2 ' A _del et ed))
t (list 'take (Tist d1 'A)))

nd (not (equal di1 'A))
(not (equal dl1 'B))
(equal d2 'B _del eted))

t (list "take (list d1 "B)))

dl ' A del et ed)
(equal di B deI et ed)
(equal di1

y))
(or (equal d2 'A_del eted
equal d2 'B_del eted
(equal d2 'enpty)))
'take s))

nd (equal di 'A)
not (equal d2 'A)))
(list "add_A (list 'enpty d2))
(list 'add_A
(list "A deleted d2))
(list "add_A
(list "B deleted d2)))

d1 ' B)

nd (or (equal

t (list

(1ist

nil)
(if (and (equal

(not (equal d2_'B)))
(1ist (Ilst add_B (list "enpty d2))
(l'ist "add_B
(list "A deleted d2))
(l'ist "add_B
i (list "B deleted d2)))
ni
(if (and (equal dl1 'B)
(equal d2 'A))
(list (list "add_A (list d1 'enpty))
(list "add_A
(list dl1 'A deleted))
(list "add_A
in (list d1 'B_deleted)))
ni
(if (and (equal di1 'A)
(equal d2 ' B))
(list (Ilst ‘add_B (list dl 'enpty))
(list "add_B
(list d1 'A deleted))
(list "add_B
m (list dl1 'B_deleted)))
ni
Chier (PR G A sy 427 A)
ni |l
(if (?and (equal d1 'A) (equal d2 'A))
(!:ic,t (list "add_B s))
ni
(if (and (equal di1 'B) (equal d2 'B))
(n::)st (list "add_A s))
(if (or (equal dl1 'B) (equal d2 'B))
g::)s§)§ ist ‘add_B s))

4. Conputations

; proper value of directory entry
(defun val uep (v)

(or (equal v '"enpty)
(equal v 'A)
(equal v 'B)
(equal v 'B_del eted)
(equal v 'A deleted)))

; proper state of print job directory
(defun statep (s)
(and (equal (cdr (cdr s)) nil)
(valuep (first s))
(val uep (second s))))

proper event
(defun eventp (e)

23

(or (equal e 'add_A)
(equal e 'add_B)
(equal e 'take)))

; proper conputation
(defun cp (c)
(if (atomc)
t

(if (atom (cdr c)

(and (null (cdr c))
(eventp (caar c))
(statep (cadar c)))

(and (eventp (caar c))
(statep (cadar c))
(equal (st (caar c) (cadar c))

(cadadr c¢))

(cp (cdr ¢))))))

; Set of all single-step conputations
(defvar *ALL- SI NGLE- STEP- COMPS*
(product
(take add_A add_B)
(listify-elements
(product
"(enpty A B B _deleted A del eted)
(listify-elenments
'"(enpty A B B deleted A deleted)))))))

6. Sets of conputations

; A pattern denotes all conputations that

; begin with it. A set of conputations is

; represented by a list of patterns.

; The set of all single-step patterns

(defvar *ALL- SI NGLE- STEP- PATT*
(listify-elenents *ALL-SI NGLE- STEP- COVPS*))

; Checks if given conputation c matches
; given pattern p
(defun matches (c p)

(if (atom p)

(|f (atom c)
?end (equal (car c) (car p))
(mat ches (cdr c) (cdr p))))))

; Checks if given conputation natches given
; description
(defun in (c d)
(if‘(atonlm
n

h d
R

; Intersection of two descriptions
(defun intpp (pl p2)
(if (matches pl p2)
(list pl)
(i f (natches p2 pl)
(l'ist p2)
ni)))

(defun |ntpd (p d)
(|f (atom d)

(append (
(

(defun intdd (d1 d2)
(|f (at0n1dﬁ

(append (intpd (car dl) d2)
(intdd (cdr d1) d2))))

; union of two descriptions
(defun uindd (d1 d2)
(append d1 d2))

; test for enptiness of a description
(defun enp (d)
(if (atomd)
t

(and (not (cp (car d)))
(emp (cdr d)))))

; 7. Back-tracing function (psi”~-1)

(defun revconp (c)
(if (atomc)
* ALL- SI NGLE- STEP- PATT*
(conbine (rev-st (cadar c)) c¢)))

8. Back tracing function (PSI~-1)

(defun rev (Ist
(if (atoml st
ni
(append (revconp (car

I'st))
(rev (cdr Ist)))))

;9. Conputing the nmeaning of a fixed-length
; observation sequence

; conpute explanation of a single-step
; Observation sequence
(defun revers (os d)
(if (emp d)
ni
(iL (at om os)

(revers (cdr os)
(intdd (car os) (rev d))))))

; convert fixed-1length observation
; into a list of single-step observations
(defun single-step-obs (p n)
(if_(zp n)
n

(cons p (single-step-obs p (1- n)))))

convert fixed |length observation sequence

into single-step observation sequence
(defun single-step-os (fos)

(H (momfog

(append
(si ngl e- st ep-obs
first (car fos)
second (car fos)))
(single-step-os (cdr fos)))))

conputing meaning of a fixed-length
observation sequence
(defun solve-fix-os (fos)
(list
(list
fos (revers
(reverse (single-step-os fos))

“(nil)))))

10. Conputing the nmeaning of a generic
observati on sequence

; conpute neaning of a list of fixed-length
observati on sequences
(defun sol ve-fix-os-1Iist
(if (MOmflxosllm)
ni |
(append
(sol ve-fix-os (car fix-os-list))
(solve-fix-os-list (cdr fix-os-list)))))

(fix-os-1ist)

convert generic observation into a
; set of fixed-1ength observations

24

(defun fix-obs (p min opt)

(if (zp opt)
(list (list p min opt)) ;
(cons (list p (+ mn opt) 0) (fix-obs p m n

(1- opt)))))

; convert a generic observation sequence
; into a list of fixed-1ength observation
, sequences
(defun fix-os (o0s)
(if (atom os)
(list nil)

(product (fix-obs (first (car o0s)) (second

(car o0s)) (third (car o0s)))
(fix-os (cdr 0s)))))

; calcul ate meaning of a generic

; observation sequence

(defun sol ve-os (0s)
(solve-fix-os-list (fix-o0s 0s)))

11. Tools for specifying observed properties

; Conbs through given list and di scards
; elenents, which are not conputations
(defun sel ect-conps (I acc)
(if (atoml)
acc
(if (cp (car 1))
(sel ect-conmps (cdr 1) (
(sel ect-conmps (cdr |) acc))))
; Al two-step patterns
(defvar *ALL- TWO- STEP- PATT*
(sel ect - conps
(product *ALL- SI NGLE- STEP- COWPS*
ALL- SI NGLE- STEP- PATT) nil))

Defines observed property that restricts
system state at the noment of observation

This is achi eved by

(1) defining a tester function

(2) conbing tester function through al
singl e-step patterns

-t e mmaa .

def macr o def propl- hel per (const-nanme
tester-nane
vars
. body)
(progn)
(defun ,tester-nanme (conp-list acc)

(| (atonwconp-list)

(if ((lanbda , vars , body)
(caar conmp-list))
(,tester-nane
cdr conp-1list)
cons (car conp-list) acc)

(,tester-nanme (cdr conp—list))acc))))z

(def var , const-nane
(,tester-name
ALL- SI NGLE- STEP- PATT nil))))

; User interface to defpropl-hel per macro.
; It automatically constructs a nane for the
; tester function.
(d?{nacro def propl (nane vars body)
et
((tester-nane
(intern
(concatenate
"string
(synbol - nane nane)
">TESTER"))))
" (def propl- hel per
, hane
,tester-name

vars
» body)))
; Defines observed property that restricts

; system state at the nonment of observation
; AND AT THE FOLLOW NG STATE

cons (car |) acc));

This is achi eved by

(1) defining a tester function

(2) conbing the tester function

; through all two-step patterns

(def macro def prop2- hel per (const-nanme
tester-name

vars
. body)
(progn .

(defun ,tester-nanme (conp-list acc)

(i f(MOmcmmllﬁ)

(if ((lanbda , vars , body)
(caar conp-list)
(cadar conp-list))
(,tester-nane
cdr conp-1list)
cons (car conp-list) acc))
(,tester-nane
(cdr conp-list)
acc))))

(def var , const-nane
(,tester-nane
ALL- TWO- STEP- PATT
nil))))

; User interface to defprop2-hel per nmacro.
It automatically constructs a nane for the
; tester function.
(d?{nacro def prop2 (nane vars body)
et
((tester-nane
(intern
(concatenate
string
(synbol - namre nane)
"-TESTER'))))
" (def prop2- hel per
, hane
,tester-nane

,vars
, body)))

12. Conbining the meani ngs of two
observati on sequences

; Calculates total length of the given
; fixed-1ength observation sequence
(defun fos-total-len (fos)

(ig (atom f os)

(+ (second (car fos))
(fos-total-len (cdr fos)))))

; Takes a partitioned run map (os-chunk)
; and converts it into a singleton
sequence of partitioned run naps
(deEFn si ngl et on- es-chunk (o0s-chunk)

i st

(list (car os-chunk))

(cadr os-chunk)))

; Takes a set of partitioned run maps
; (os-sol) and converts each el ement
; into a singleton sequence of
; partitioned run maps
(defun singl et on-es-so
(i f (atom os-sol)
ni
(cons (singl eton-es-chunk (car os-sol))
(singleton-es-sol (cdr os-sol))))

(os-sol)

)

Takes given sequence of partitioned
run maps (es-chunk)and conbines it with
; given partitioned run nmap (os-chunk).
; Returns either nil -if conbination
; is inpossible, or an updated es-chunk
(defun conb (os-chunk es-chunk)
(if (equa
(fos-total-len (car os-chunk))
((fos-total -l en (caar es-chunk)))
et
(intersection

|
(

25

1
i
B

1
1
B

(intdd (cadr os-chunk)
(cadr es-chunk))))
(if (enp intersection)

ni
(list
(list
(cons (car os-chunk
car es-chunk))
intersection))))
nil))

Conbi nes gi ven set of sequences of
partitioned run maps (es-sol) with
the given partitioned run nmap.

def un add- chunk-to-sol (es-sol o0s-chunk)
(if (atom es-sol)

ni

(append

(conmb os-chunk (car es-sol))
(add- chunk-to-sol (cdr es-sol)
os- chunk))))

Conbi nes given set of sequences of
partitioned run maps (es-sol) with the
gi ven set of partitioned run nmaps (o0s-sol)

defun add-sol (os-sol es-sol)
(if (atom os-sol)
ni
(append

(add- chunk-to-sol es-so
(car os-sol))
(add-sol (cdr os-sol) es-sol))))

26

13 ACME Investigation Analysis (defvar *SOL- ES- ACME*

(add- sol
OBSERVED PROPERTI ES ’(*E;d |
add- so
(def propl *B_DELETED* (X) *D*
and (add- sol
(equal (first (second x)) 'B_deleted) *Cr

(equal (second (second x)) 'B_deleted)))

(singleton-es-sol *A*)))))

(def propl *EMPTY* (X) (defvar *SOL- ES- PRI MED- ACVE*

d
(a?equal (first (second x)) 'EMPTY)
(equal (second (second x)) 'EMPTY)))

(def propl *NO ADD- A* (x)
(not (equal (first x) 'ADD A)))

(def prop2 *NO STUTTERI NG* (X V)
(not (equal (second x) (second y))))

(def propl *NO ADD_B- | N- FI NAL- STATE* (Xx)
(if (and (equal (first (second x))
' B_del et ed)
(equal (second (second X))
'B_del eted))
(;\;)t (equal (first x) 'ADD_B))
t

I nfinitum
(defvar *inf* 8)

(defvar *C_T* *ALL- SI NGLE- STEP- PATT*)

: COVPUTI NG THE MEANI NG OF OBSERVATI ON
' SEQUENCES

; Carl's observation sequence
(defvar *A* (solve-os
((,*C_T* 0 ,*inf*)
(,*DELETED* 1 0))))

; Manuf acturer's observation sequence
(defvar *E* (sol ve-os

“((, *EMPTY* 1 0)

(,*C_T* 0 ,*inf*))))

; Alice's Caim
(defvar *B* (sol ve-o0s
“((,*NO-ADD-A* 0 , *inf*)
(,*DELETED* 1 0))))

; Additional observation sequences that
; control proliferation of possible
; expl anati ons

; Assune that every transition changed
; the state of the print job directory.
(defvar *C* (sol ve-o0s
“((,*NO STUITERING* 0 , *inf*)
(, *FI NAL- STATE* 1 0))))

; Assune that Bob did not print anything,
; once the print job directory got into the
; final state
(defvar *D* (sol ve-os
“((,*NO-ADD B-IN-FIN* 0 , *inf*)
, *DELETED* 1 0))))

; COVPUTE THE MEANI NGS OF EVI DENTI AL
; STATEMENTS

; Conpute the neaning of the evidential

; statenments es_ACME and es' _ACME
; (wWith additional restrictions *DF and *E*)

27

(add- sol *B* *SOL- ES_ACME*))

1

construct a 'prettified string that
describes a |i1st of objects
(defun pretty (1)

('.f. (nul'l
(if (atoml) (synbol-nane |)
(let ((s (car 1)))
(concatenate 'string

(if (synbolp s)
(synbol - nanme s)
(if (consp s)
(concatenat e
"string "(" (pretty s) ")

nop9p
(if (not (null’(cdr 1)))

’
nu

(pretty (cdr 1)))))))

Constructs an underscore-separ at ed
identifier that represents a |ist of
?b{ects -- for use as identifier in DOT
ile
defun stringify (I
(if (atoml)
acc
(stringify
(cdr 1)
(concatenate
string
acc "_"

acc)

e

(synbol -nane (car 1))))))
; Flatten a tree of objects
(defun flatten (1)
(if (atoml)
|

(if (consp (car 1))
(append
(flatten (car I%I)

(flatten (cdr
(cons (car 1) (tt

1))
atten (cdr 1))))))
; Draw a reversed conputation
(defun drawconp (fil e conp nanel)
(if (atomconp) nil

(progn ; draw first oval
(fornat
file
"n~A [l abel =\"~A\"]; ~%
nanel

_ (pretty (cadar conp)))
(|fn_|(atom(cdr conp))
|
(let
((nane2
(concat enat e
string
nanel
(stringi
(fla

y
tten
"))

if
g)e (cadr conp))
(progn
(fornmat
file
"n~A [| abel
nanme2
(pretty (cadadr corrp)))
(for nat ; draw |1 nk
file
"'n~A -> n~A [l abel =\"~A\"];
name2
nanmel
(synbol - nanme (car
(draw conp ;

2\ ~A] %

draw t he rest

file (cdr eorrp) name2)))))))

; Draw a list of conputations
(defun draw conps (file conps)
(if_l(atomconps)
ni
(let ((rv (reverse (car conps))))
(progn
(draw- conp
file
rv

14. Drawi ng reconstruction results using DOT

")

)

draw second oval

~%

(cadr COﬂp))))

(stringify
(cdr (fl
(draw-conps file

atten (car rv)))
(cdr conps))))))

; Draw conputations satisfying evidential
; statenent
(def un drawsol (file es-sol)

(| (atom es-sol)

(progn
(drawconps file (cadar es-sol))
(drawsol file (cdr es-sol)))))
TOP LEVEL FUNCTI ON

(defun draw (es-sol)

(with-open-file (f "t.dot"
;direction :output
tif-exists :supersede)

(for mat
f

"strict digraph G{ ~%size=\"8, 11\"

rankdi r=LR, ~%)
(draw- sol
(format f

))
; 15. Draw the result of

f es-sol)
"}~%)

reconstruction

Conput e the nmeaning of the evidential
statenent that consists of all observation
that defines the initial state of the
print job directory

(defvar *SOL*
(add- sol
* DF

(add- sol
*C
(add-sol
B
(singl eton-es-sol

*A)))))

; draw the result
(draw *SOL*)

28

"))

; ~%

sequences W t hout manufacturer's observation

