
Finite State Machine Approach to 
Digital Event Reconstruction 

Pavel Gladyshev and Ahmed Patel

Department of Computer Science, 
University College Dublin,
Belfield, Dublin 4, Ireland

pavel@gladyshev.info , ahmed.patel@ucd.ie

Abstract 

This paper presents a rigorous method for reconstructing events in digital systems.  It is
based on the idea, that once the system is described as a finite state machine, its state space
can be explored to determine all possible scenarios of the incident.  To formalize evidence,
the evidential statement notation is introduced.  It represents the facts conveyed by the
evidence as a series of witness stories that restrict possible computations of the finite state
machine.  To automate event reconstruction, a generic event reconstruction algorithm is
proposed.  It computes the set of all possible explanations for the given evidential statement
with respect to the given finite state machine.

Keywords:  digital, forensics, event, reconstruction, algorithm, state machine

1 Introduction

A sound forensic analysis is expected to rely on a credible scientific theory that explains why
and how expert conclusions follow from the available evidence.  Digital forensic analyzes are
currently lacking such a theory.  To improve this situation, this paper demonstrates how finite
state machines can be used to formalize event reconstruction in digital investigations.  It
gives mathematical definition of the event reconstruction process and proposes a generic
event reconstruction algorithm based on that definition.

Consider the following idea.  Many real-world digital systems, such as digital circuits,
computer programs, or network protocols, can be described mathematically as finite state
machines.  A finite state machine can be depicted as a graph, whose nodes represent possible
system states, and whose arrows represent possible transitions from state to state (see Figure
1).  All possible computations leading to a particular state can be determined by back-tracing
transitions leading to that state.  In theory, the investigator could perform event
reconstruction as follows:

1. Obtain a finite state model of the system under investigation.

2. Determine all possible scenarios of the incident by back-tracing transitions from
the state in which the system was discovered.

3. Discard scenarios that disagree with the available evidence.

This vague idea is generalized and clarified in the rest of this paper.  The presentation is
organized into four sections.  Section 2 illustrates the key concepts of the proposed

1



reconstruction approach on a simple analysis example.  Section 3 formalizes the concepts
introduced in Section 2 and gives rigorous definition of the event reconstruction problem.
Section 4 describes a generic event reconstruction algorithm based on that definition.
Finally, Section 5 puts the work in the context of related research, discusses its possible
applications and possibilities for further development.

2 Informal example of state machine analysis

This section illustrates the proposed event reconstruction approach by using it on a fictional
example of networked printer analysis.  First, an informal analysis is given, then it is repeated
using a finite state model of the printer.

2.1 Investigation at ACME Manufacturing

The dispute.  The local area network at ACME Manufacturing consists of two personal
computers and a networked printer as shown in Figure 2.  The cost of running the network is
shared by its two users Alice (A) and Bob (B).  Alice, however, claims that she never uses the
printer and should not be paying for the printer consumables.  Bob disagrees, he says that he
saw Alice collecting printouts.  The system administrator, Carl, has been assigned to
investigate this dispute.  

2

Figure 1.  Event reconstruction by back-tracing transitions

0 1

Transition graph of a single-bit memory cell

write 1

write 1write 0

write 0

00

0

1

write 0

write 0

0

1

0

1

Event reconstruction by back-tracing transitions

write 0

write 0

write 1

write 1

0

0

1

write 0

write 0

final state 



The investigation. To get more information about how the printer works, Carl contacted the
manufacturer.  According to the manufacturer, the printer works as follows:

1. When a print job is received from the user it is stored in the first unallocated
directory entry of the print job directory.

2. The printing mechanism scans the print job directory from the beginning and picks
the first active job. 

3. After the job is printed, the corresponding directory entry is marked as “deleted” ,
but the name of the job owner is preserved. 

The manufacturer also noted that

4. The printer can accept only one print job from each user at a time.

5. Initially, all directory entries are empty. 

After that, Carl examined the print job directory. It contained traces of two Bob's print jobs,
and the rest of the directory was empty:

job from B (deleted)
job from B (deleted)

empty
empty
empty

...

The analysis.  Carl reasons as follows.  If Alice never printed anything, only one directory
entry must have been used, because printer accepts only one print job from each user.
However, two directory entries have been used and there are no other users except Alice and
Bob.  Therefore, it must be the case that both Alice and Bob submitted their print jobs at the
same time.  The trace of the Alice's print job was overwritten by Bob's subsequent print jobs.

In the next subsection, it is shown how the same conclusion can be mechanically derived

3

Figure 2.  ACME Manufacturing LAN topology

A B



from the finite state model of the print job directory.

2.2 State machine analysis of the ACME investigation

Please look at Figure 3.  It shows a finite state model of the print job directory.  Ellipses
correspond to possible states of the directory.  Arrows correspond to addition (or deletion) of
print jobs.  

Each ellipse in Figure 3 shows the content of the print job directory in the corresponding
state.  For the sake of simplicity, only the first two directory entries are modeled.  For
example, the ellipse (A,B) represents the state in which directory contains an active job from
Alice, and an active job from Bob:

job from Alice
job from Bob

empty
empty
empty

...

The initial state of the directory corresponds to the ellipse (e,e).  The state discovered by Carl
corresponds to the ellipse (BX,BX).  Any possible scenario of the incident corresponds to a path
from (e,e) to (BX,BX).  All such scenarios can be found by back-tracing transitions leading into
(BX,BX), or equivalently, by forward-tracing transitions from (e,e).

The Alice's claim that she never printed anything corresponds to a path from (e,e) to (BX,BX)
that does not have states with “A” in them.  By forward-tracing transition from (e,e), one can
ensure that any path from (e,e) to (BX,BX) has to go through either (A,B) or (B,A) state, which
means that Alice is lying.

2.3 The need for formal statement of event reconstruction problem

The example presented in this section shows that the rigor and objectivity of digital forensic
analysis can be improved by using formal methods of computer science.  However, formal
analysis is more labor intensive than informal analysis, because additional effort is required
for formalizing the system under investigation.  On the other hand, the exploration of
possible computations can be automated, thus, speeding-up formal analytical process.  

Any tool for automation of forensic analysis will rise the question of its correctness.  But
before the tool's correctness can be proved, it is necessary to define precisely what it means
for a tool to be correct.  To answer this question, the next section proposes a formal definition
of event reconstruction problem – a formal statement of what is the correct outcome of event
reconstruction for the given evidence and digital system.

3 Formalization of event reconstruction problem

This section formally defines the event reconstruction problem. It is based on the idea that
the knowledge used by forensic expert to reconstruct past events in a digital system can be
divided into two categories:

• Knowledge of the system functionality – the expert knowledge

4



5

A, A

B, A

e, A

B, A

B, A

A, A

B, A

A, A

A, A

e, B

B, B

A, B

A, B

B, B

A, B B, B

B, B

A, B

B, e A, e

B, e A, e

e, e

e, Be, A

add job from A ( A )

Events:

take next job (       )

add job from B ( B )

e empty
A print job from A
B print job from B
A deleted print job from A
B deleted print job from B

Directory entry values:

State structure:

,directory 
entry 2

directory 
entry 1

A

A
A

A

A

AA

A

A

A
A

A
A

A

AA

B

B
B

B

B
B

B

B

B
B

B
B

B

B
B

B

B

B

B

B
B

B

B

B

B

A

A

A

AA

A

A

A

A

Figure 3.  Transition graph of the print job directory model



• Evidence – description of the system's final state and clues to the system's behavior
in the past, such as witness statements, printouts, etc.

The proposed theory formalizes the knowledge of the system functionality as a finite state
machine and defines evidential statement notation for describing the evidence and
investigative assumptions.  The event reconstruction problem is then defined as finding all
possible explanations for the given evidential statement with respect to the given finite state
machine.

3.1 Notation

Sets are denoted by capital Roman letters A , B ,C ...
Set of integers is denoted ℤ
Empty set is denoted ∅

Sets are defined either by explicit enumeration A={a ,b , c}
or by a set former A={x ∣P x }

Set product of A and B is denoted A×B

The nth power of set A is denoted An

The powerset (the set of all subsets) of set A is denoted 2A

Symbols  ⊇,⊃ ,⊆,⊂ ,∪,∩ ,∉ ,∈  are used in their usual mathematical meaning.

Sequences are denoted by lower case letters a ,b , c , d

Sequences are defined by listing their elements s=1,2 ,3
Empty sequence is denoted 

The length of sequence s is denoted ∣s∣

Elements of sequence s are denoted si ,where 0≤i∣s∣, i∈ℤ

Head of sequence s is its first element s0

Tail of sequence s is the rest of s s1 , s2 , ... s∣s∣−1

Concatenation of sequences s and q is denoted s . q

Function  that maps set A into set B is denoted  : AB

3.2 Finite state machine

Finite state machine is a sequence of four elements T=Q , I , , q  , where

6



I is a finite set of all possible events,
Q is a finite set of all possible states,
 : I×QQ is a transition function that determines the next state for every

possible combination of state and event,
q ∈ Q is the current system state

Transition is the process of state change. Transitions are instantaneous.

A (finite) computation is a non-empty, finite sequence of steps c=c0 , c1 , ⋯ , c∣c∣−1
, where each step is a pair c j=c j

 , c j
q , where c j

∈I is event, c j
q∈Q is a state,

and any two steps ck and ck−1 are  related via transition function:

for all k , such that 1≤k∣c∣ , ck
q=ck−1

 , ck−1
q 

The set of all finite computations of the finite state machine T is denoted CT .

3.3 Run

To formalize transition back-tracing, the concept of run is defined.  A run is a possibly empty
sequence of finite computations, in which the next computation is obtained from the previous
computation by discarding its first element.  Please look at Figure 4, which graphically
illustrates this concept.  

A run is a sequence of computations r ∈ CT 
∣r∣ , such that if r is non-empty, its first

element is a computation r0 ∈ CT , and for all 1≤i∣r∣ , r i = r i−1 , where
function  discards the first element of the given computation.

7

Figure 4.  Run of computation

0 01

Computation c

1

00 00 010 011

final computationinitial computation ( c )

final stateinitial state

Run of computation c



For two computations x∈CT and y∈CT , y=x  if and only if x=x0 . y   

The set of all runs of the finite state machine T is denoted RT .

The run of computation c is a run, whose first computation is c .  

Observe that any run r is completely determined by its length and its first computation.

3.4 Partitioned run

Partitioned run is a finite sequence of runs pr ∈ RT 
∣pr∣ , such that concatenation of its

elements in the order of listing is also a run:  pr 0 . pr1 . pr2 . ⋯ . pr∣pr∣−1 ∈ RT
.

Set of all partitioned runs is denoted PRT .

A partitioning of run r ∈ RT is a partitioned run denoted pr r , such that concatenation
of its elements produces r :

  pr r 0 . pr r 1 . pr r 2 . ⋯ . pr r ∣pr r∣−1 = r

3.5 Formalization of back-tracing 

The inverse of   is function −1 :CT2CT .  For any computation y ∈ CT , it
identifies a subset of computations, whose tails are y :

for all x ∈ −1y , y=x 

In other words, −1 back-traces the given computation.

Although function −1 can be used to formalize back-tracing, it is inconvenient, because it
takes a single computation and produces a set of computations.  As a result, it cannot be
applied to its own output.  A more convenient alternative is function −1 :2CT2CT , which
is applied to a set of computations:

for Y ⊆ CT , −1Y =  ∪ 
∀ y∈Y

−1y 

The meaning of functions  , −1 , and −1 is illustrated in Figure 5.

Back-tracing of computations is defined as a finite number of compositions of −1 with
itself applied to a subset of computations.

Additional convenience of function −1 is that it's software implementation can manipulate
implicit symbolic descriptions of computation sets, whereas implementation of −1

requires explicit representation of computations.

8



9

a b c

x y

ψ (x)

a

y

ψ - 1

(y)

z

e

b c

b c

b c

b c

b ca

y

z

e b c

b c

b c

b c

a

Ψ - 1

(Y)

z

e b c

b c

b c b c

a

z

e b c

b c

b c b c

edf

a

d e

d e

Y

Figure 5.  Functions ψ, ψ-1 , and Ψ-1



3.6 Formalization of evidence

In a way, every piece of evidence tells its own “story” of the incident.  The aim of event
reconstruction can be seen as combining stories told by witnesses and by various pieces of
evidence to make the description of the incident as precise as possible.  This story-oriented
view of event reconstruction is the basis of evidence formalization presented below.

3.6.1 Observation

Observation is a statement that system behavior exhibited some property p continuously
for some time.  Formally, it is defined as a triple o = P , min , opt  , where

P is the set of all computations of T that possess observed property, min and opt are
non-negative integers that specify duration of observation.

An explanation of observation o is a run r∈RT such that every element of run r
possesses observed property: for all 0≤i∣r∣, r i ∈ P , and the length of run r satisfies

min and opt : min ≤ ∣r∣ ≤ minopt  .

The meaning of observation o is the set Ro ⊆ RT of all runs that explain o .

Observations can be divided into several types:

• Fixed length observation is observation of the form P , x , 0 .  Any run
explaining it has length x .

• Zero-observation is observation of the form P ,0,0 .  The only run explaining
it is the empty sequence   

• No-observation is observation $ = CT , 0, infinitum that puts no restrictions
on computations that could have happened during the incident. The infinitum is
an integer constant that is greater than the length of any computation that may have
happened during the incident.

3.6.2 Observation sequence

An observation sequence is a non-empty sequence of observations listed in chronological
order:

os= observationA , observationB , observationC , 

An observation sequence represents uninterrupted eyewitness story.  The next observation in
the sequence begins immediately when the previous observation finishes.  Gaps in the story
are represented by no-observations.

An explanation of observation sequence os is a partitioned run pr such that 
The length of pr is equal to the length of os : ∣pr∣=∣os∣ , and each element of pr
explains the corresponding observation of os : for all 0≤i∣os∣, pr i∈Rosi

Note that the same run can explain the same observation sequence in a number of ways, each

10



corresponding to a different partitioning of the run.  Figure 6 illustrates this possibility of
multiple explanations.

The meaning of observation sequence os is the set PRos ⊆ 2RT 
∣os∣

of all partitioned runs
that explain os .

A run r satisfies an observation sequence os if and only if there exists a partitioning of
r that  explains os .   There may be more than one partitioning of r that explains os .

A computation c satisfies an observation sequence os if and only if there is a run r
that satisfies os and r0=c .

3.6.3 Evidential statement

Evidential statement is a non-empty sequence of observation sequences

es = osA , osB , , osC , ⋯

Evidential statement combines restrictions imposed by all of its observation sequences – a
computation satisfying one observation sequence must also satisfy all other observation
sequences in the evidential statement.

An explanation of evidential statement es is a sequence of partitioned runs spr  , such
that all elements of spr are partitionings of the same run:

11

explanation
A 

=  (                                            ,                                 ) 

explanation
B 

=  (                             ,                                                ) 

os = (  (P
1
, 1, infinitum),  (P

2
, 1, infinitum)  )

             run  =

P
1
 = {             ,            ,            }

P
2
 = {             ,            ,             }

P
1

P
1

P
1

P
2

P
2

P
2

S
1

S
2

S
3

S
3

S
4

S
5

S
1

S
2

S
3

S
4

S
5

S
1

S
2

S
3

S
4

S
5

S
1

S
2

S
3

S
4

S
5

Figure 6.  A run that gives two explanations of the same observation sequence



spr0,0 . spr0,1 . ⋯ . spr 0,∣spc0∣−1 =
= spr1,0 . spr1,1 . ⋯ . spr1,∣spc1∣−1 =

⋮
= spr∣es∣−1 ,0 . spr∣es∣−1 ,1 . ⋯ . spr∣es∣−1 ,∣spc1∣−1 = r

    
 and the length of spr is equal to the length of es

∣spr∣ = ∣es∣

 and each element of spr explains corresponding observation sequence of es :

for all 0≤i∣es∣, spr i ∈ PResi

The meaning of evidential statement es is the set of  all sequences of partitioned runs
SPRes ⊆ PRes0

×PRes1
× ⋯×PRes∣es∣−1

 that explain es .

Evidential statement is inconsistent if it has empty set of explanations SPRes=∅ .

Figure 7 illustrates the relationship between the evidential statement and other formal notions
introduced in this section.

3.6.4 Definition of event reconstruction problem

In terms of the above defined formalization of evidence, event reconstruction problem is
defined as calculating the meaning SPRes of the given evidential statement es with
respect to the given finite state machine T . 

3.7 Formalization of event reconstruction: An example

To illustrate the use of formal machinery defined above, this section formalizes event
reconstruction problem for the example investigation described in Section 2. 

Formalization of system functionality.  First, it is necessary to define a state machine that
describes the functionality of the printer that was investigated by Carl at the ACME
Manufacturing.  Such a state machine was given in Figure 3.  It's set of possible states is
defined as

DIR={A , B , A_deleted , B_deleted ,empty }
Q=DIR×DIR

Note that in Figure 3, “A_deleted” is denoted as AXX, “B_deleted” is denoted as BX, and “empty”
is denoted as e.

The set of possible events is defined as I={add_A ,add_B , take } .  Note that in Figure 3,
events are shown on the arrows. Event “add_A” is denoted as “A”, event “add_B” is denoted
as “B”, and event “take” is denoted as a “X”.

Transition function  : I×QQ is graphically defined as follows.  For every event

12



 ∈ I and state  x , y ∈ Q , Figure 3 defines the next state  x ' , y ' = ,x , y by
the arrow that leads from oval x , y  to oval x ' , y '  and is labeled with  .  

Formalization of evidence.  First, consider properties observed by the witnesses.  The initial
state of the print job directory, which was observed by the printer manufacturer, is described
by the property

Pempty = {c ∣ c ∈ CT , c0
q=empty , empty }

which says that both directory entries at the moment of observation are empty.  The final
state of the printer, which was observed by Carl during printer examination, is described by
the property

PB_deleted = {c ∣ c ∈ CT , c0
q=B_deleted , B_deleted  }

which says that both directory entries at the moment of observation contain deleted print jobs
from Bob.

13

event, state event, state ...

Computation

computation computation ...

Run

run

Partitioned run

run

partitioned run

Sequence of partitioned runs

partitioned run

observed property

Observation

observation

Observation sequence

observ. seq.

Evidential statement

observ. seq.

observation

explains

explains

explains

...

...

..

.

...

Figure 7. Evidential statement and related notions



The complete “stories” told by Carl and the printer manufacturer are captured by two
observation sequences.  The first observation sequence describes Carl's story:

osCarl =  CT ,0, infinitum , PB_deleted ,1, 0 

it says that Carl observed nothing about the state of the print job directory, until he examined
the printer and found that both directory entries contained deleted print jobs from Bob.

The manufacturer story is that, initially, all directory entries were empty, but then the printer
was sold and nothing was observed about its subsequent states:

osmanufacturer =  Pempty ,1, 0 , CT , 0, infinitum  

These observation sequences form the evidential statement

esACME =  osCarl , osmanufacturer 

The evidential statement combines the knowledge contained in the two observation
sequences.  The task of event reconstruction is to find all computations that satisfy both
observation sequences simultaneously. 

3.8 Testing investigative hypotheses by including them into evidential statement

The purpose of event reconstruction is usually to prove or disprove some claim about the
incident.  To show that the claim may be true, the investigator has to show that there are some
explanations of evidence that agree with the claim.  To disprove the claim, the investigator
has to show that there are no explanations of evidence that agree with the claim.

In the investigation described in Section 2, the claim is that Alice never printed anything.  To
formally disprove that claim, the investigator has to show that all explanations of the
evidential statement esACME involve Alice printing something at one point or another.  A
straightforward approach would be to compute all possible explanations for esACME and
check them all manually.  However, this approach is impractical when the number of
explanations is large.  An alternative approach is to formulate the claim as an observation
sequence, include it into the evidential statement, and try to find explanations that agree with
both the evidence and the claim.

For example, Alice's claim can be formalized as observation sequence, which says that Alice
did not print anything until Carl examined the printer:

P Alice = {c ∣ c ∈ CT , c0
≠add_A }

osAlice =  P Alice ,0, infinitum  , PB_deleted ,1 , 0 

The extended evidential statement for the ACME investigation is then

es ' ACME =  osAlice , osCarl , osmanufacturer 

14



If there are explanations of es ' ACME  they must agree with both the evidence and the Alice's
claim, which means that the claim may be true.  If there are no explanations of es ' ACME  but
there are some explanations of esACME  the claim must be false, because it makes evidential
statement inconsistent. 

4 Event reconstruction algorithm

This section describes an algorithm for computing the meaning of the given evidential
statement with respect to the given state machine.  The algorithm is presented in four steps.
First, a procedure for computing the meaning of fixed-length observation sequences is
presented.  Second, a procedure for computing the meaning of generic observation sequences
is presented.  Third, it is shown how the meanings of individual observation sequences can be
combined into the meaning of the evidential statement.  Finally, a “proof-of-concept”
implementation of the algorithm in Common Lisp is described.

4.1 Computing the meaning of sequences of fixed-length observations

Recall function −1 :2CT2CT introduced in Section 3.5.  It takes a set of computations

Y∈2CT and produces the set of all computations, whose tails are in Y .  In other words, it
returns all possible back-tracings of computations in Y .

Function −1 provides basic operation for automation of back-tracing.  Together with set
intersection, it can be used to calculate the meaning of observation sequences that consist of
fixed-length observations only.  The idea is to take the set of all computations CT as the
starting point and iteratively back-trace it into the past using −1 .  At each step,
computations that do not possess observed property are discarded. This is achieved by
intersecting the set of back-tracings with the set of computations that possess property
observed at the current step. The result of intersection is then used as input for the next
invocation of −1 , and so on. The process continues until either all observations are
explained, or the set of computations becomes empty.  Please look at Figure 8, which
illustrates this process for observation sequence

example =  A ,3, 0 , B ,2, 0 

If the set of computations produced at the last step of reconstruction is non-empty, its
elements satisfy observation sequence example by construction.  The set of partitioned runs

PRexample that explain example can be generated from these computations using function
 and the fixed length of observations in example .

A map of partitioned runs (MPR) is a representation for a set of partitioned runs.  It is a tuple 
pm = len ,C  where C is the set of initial computations, len is a sequence of

partition lengths.  A single MPR represents the set of all partitioned runs whose initial
computation is in C , and whose partitions have lengths len0, len1, ⋯ , len∣len∣–1 .  

Observe that the meaning of a fixed length observation sequence can be expressed by a single
MPR.

15



16

Reconstruction steps:
step 4step 5 step 3 step 2 step 1

Computations that
possess property A

Computations that
possess property B

example = (  (            A, 3, 0            ),     (    B, 2, 0     )  )

B    C
T 

B    Ψ - 1 (B    C
T 
)

Ψ - 1 (B    C
T
)

Ψ - 1 ( B    Ψ - 1 (B    C
T 
) )

A    Ψ - 1 ( B    Ψ - 1 (B    C
T 
) )

Ψ - 1 ( A    Ψ - 1 ( B    Ψ - 1 (B    C
T 
) ) )

A    Ψ - 1 ( A    Ψ - 1 ( B    Ψ - 1 (B    C
T 
) ) )

Ψ - 1 ( A    Ψ - 1 ( A    Ψ - 1 ( B    Ψ - 1 (B    C
T 
) ) ) )

A    Ψ - 1 ( A    Ψ - 1 ( A    Ψ - 1 ( B    Ψ - 1 (B    C
T 
) ) ) )Final:

Figure 8.  Finding explanations of a fixed-length observation sequence 



4.2 Computing the meaning of generic observation sequences

The reconstruction process described above works, because the property observed at every
step is known.  This is because the length of run satisfying a fixed length observation is equal
to the observation's min parameter.   For a generic observation o=P , min ,opt  , 
whose opt ≠ 0 ,  the length of explaining run is not fixed, but is bounded between min
and minopt .  As a result, single observation sequence represents many variants of
linking observed properties to reconstruction steps.  Consider, for example, observation
sequence example2 =  A ,1,3 , B ,1,2  , which says that 

• initially, property A was observed for at least 1 and at most 4 step, 

• then property B was observed for at least 1 and at most 3 steps.
 

This observation sequence represents twelve possible variants of linking properties to
reconstruction steps: 

          AB ABB ABBB
        AAB AABB AABBB
      AAAB AAABB AAABBB
   AAAAB AAAABB AAAABBB

Every one of these variants can be represented by a fixed-length observation sequence.  Note
that the meaning of example2 is the union of explanations of each variant.  Thus, the
meaning of example2 can be calculated as follows:

1. Convert example2 to a set of fixed-length observation sequences.

2. Calculate the meaning of each fixed-length observation sequence in as described
above.

3. Calculate the union of explanations of the fixed-length observation sequences.

Observe that the meaning of example2 can be represented as a set of MPRs – each MPR
representing the meaning of one of the fixed-length observation sequences.

4.3 Computing the meaning of evidential statement

The meaning of an evidential statement can be computing using a two-step procedure.  First,
the meanings of individual observation sequences are computed as described in the previous
sections. Then the meanings of observation sequences are combined into the meaning of the
entire evidential statement.  

To combine the meanings of observation sequences, note that, to satisfy the evidential
statement, a run must satisfy all of its observation sequences.  Thus, the problem is to
identify the subset of  runs, whose partitionings are present in the meanings of all observation
sequences.  

Let pma=lena , Ca  and pmb=lenb ,Cb be two MPRs.  A run r can be partitioned
by both pma and pmb if and only if two conditions hold:

17



1. the initial computation of run r belongs to initial computation sets of both MPRs:
r 0 ∈ Ca and r0 ∈ Cb , and

2. both MPRs have equal total number of computation steps:  lena =  lenb .

If  lena ≠  lenb , then the two MPRs have no common runs.   Otherwise, the common
runs are determined by the common set of initial computations Ca ∩ Cb .

A map of sequence of partitioned runs (MSPR)   mspr =  len0 , len1 , ⋯ , lenn , C  is a
representation for a set of sequences of partitioned runs. C is the set of initial
computations, and len0 , ⋯ lenn are lists of lengths that describe how to partition runs
generated from the elements of C .  MSPR is proper if and only if
 len0 =  len1 = ⋯=  lenn .  

The combination of two MPRs is defined by function comb that takes two MPRs and
returns a proper MSPR:

comb  pmx , pmy = { ∅ , if  lenx≠ leny  or  C x∩C y=∅
  lenx , leny , C x∩C y  , otherwise ∣

Suppose that the meanings of two observation sequences osa and osb  are represented
by two sets of MPRs called PM a and PM b respectively.  The meaning of evidential
statement es=osa , osb is expressed by the set of proper MSPRs, which is obtained by
combining every MPR from PM a with every MPR from PM b :

∀ x∈PM a , ∀ y∈PM b , SPM es = ∪ comb x , y 

This process can be extended to arbitrary number of observation sequences, thus providing a
way to calculate meaning of an arbitrary evidential statement.

Implementation note.  The computation method described above has been deliberately made
inefficient to clarify the concepts underlying it.  If observations have large opt parameters,
it will generate large number of fixed-length observation sequences, which may overflow
computer memory.  To address this problem, generation and reconstruction of fixed length
observation sequences can be combined into a single process, which constructs fixed length
observation sequence only as far as necessary to perform the next reconstruction step.  It
might also be possible to devise problem-specific checks that detect and abandon fruitless
back-tracings early in the reconstruction process.

4.4 Implementation of the algorithm

The algorithm described above has been implemented with minor modifications as a “proof-
of-concept” Common Lisp program, whose source code is given in the Appendix.  The
program can compute meanings of evidential statements about the print job directory model
from Section 3.7.  It was developed using CMU Common Lisp18c running on a Pentium PC.
The following sections describe program interface and its application to the example analysis
from Section 2.

18



4.4.1 Overview of the program interface

The program provides a set of constants, macros, and functions for defining observation
sequences, computing their meaning, combining the meanings of observation sequences into
meanings of evidential statements, and visualizing the meanings of evidential statements.

Observed properties are defined using two macros: defprop1 and defprop2.

Macro (defprop1 name1 (c0) exp1) defines constant with name name1 that
represents the set of computations, whose first element c0 satisfies logical expression exp1.
Formally, it defines property of the form Pname1 = {c ∣ c ∈ CT , exp1c0 } .  For
example, property PB_deleted that describes the final state of the printer is defined as follows

(defprop1 *B_DELETED* (x) 
  (and (equal (first (second x)) 'B_deleted) 
       (equal (second (second x)) 'B_deleted)))

Macro (defprop2 name2 (c0 c1) exp2) defines constant with name name2 that
represents the set of computations, whose first element c0 and second element c1 satisfy
logical expression exp2.  Formally it defines property Pname2={c∣c∈CT , exp2 c0 , c1 }  .

Observation sequences are represented by Lisp lists.  Observation sequences osCarl

and osmanufacturer from Section 3.7 can be defined as follows

(defvar *CARL* `((,*C_T* 0 ,*inf*) (,*B_DELETED* 1 0)))
(defvar *MANU* `((,*EMPTY* 1 0) (,*C_T* 0 ,*inf*)))

where *C_T* represents CT , *inf* represents infinitum , *B_DELETED* represents
property PB_deleted , and *EMPTY* represents property Pempty .

The meaning of observation sequence is computed using function solve-os.  It takes an
observation sequence as input and returns a list of MPRs that describes the meaning of the
given observation sequence.  For example, the meaning of osCarl is computed by 

(solve-os *CARL*)

The meanings of evidential statement is combined from meanings of individual observation
sequences using functions singleton-es-sol and add-sol.  Function  singleton-es-
sol transforms the meaning of a single observation sequence os into the meaning of
singleton evidential statement es =  os  .  Function add-sol takes the meanings of
observation sequence os and evidential statement es  to produce the meaning of
combined evidential statement os .es .  For example, the meaning of esACME is computed
by the following code

(defvar *SOL-CARL* (solve-os *CARL*))
(defvar *SOL-MANU* (solve-os *MANU*))
(add-sol *SOL-MANU* (singleton-es-sol *SOL-CARL*))

To visualize the meaning of evidential statement, function draw is provided.  It takes the
meaning of evidential statement and creates a tree of possible scenarios1. An example tree is

1 The output of draw is a file for DOT utility [4]. The latter should be manually invoked to draw the tree.

19



shown in Figure 9.   

4.4.2 Automated analysis of the ACME investigation

The code that automates analysis of the ACME investigation is given in the Appendix on
page 27.  It computes the meanings of two evidential statements.  One evidential statement
describes only the evidence.  The other evidential statement describes the evidence and the
Alice's claim that she never used the networked printer.  These statements correspond to the
evidential statements esACME and es ' ACME from Section 3.8.  The meanings of the two
evidential statements are stored into variables *SOL-ES-ACME* and *SOL-ES-PRIMED-
ACME* respectively.  

When the program stops, it can be manually verified that *SOL-ES-ACME* contains some
explanations while *SOL-ES-PRIMED-ACME* is empty.  It means that, addition of Alice's
claim into consistent evidential statement esACME produced an inconsistent evidential
statement es ' ACME , which means that Alice must be lying.

The problem of speculative transitions. Initial attempts to automate analysis of ACME
investigation has shown that the presence of loops in the transition graph dramatically
decreases the performance of the program given in the Appendix.  The problem is caused by
speculative transitions – transitions that may or may not have happened. 

An example of speculative transition is an attempt of the printing mechanism to take the next
print job from the empty print job directory.  Such transition does not change the state of the
print job directory, because the directory is empty.  However, if there is no evidence that it
did or did not happen, there is no reason to believe that it never happened, or that it happened
once, twice, or more times.  Every such possibility corresponds to a separate explanation of
the evidential statement.

The impact of the problem was reduced by exploiting the nature of the hypothesis being
tested.  The hypothesis is that Alice never printed anything.  The truth or falseness of that
statement is not affected by how many times sequences of transitions are repeated.
Reflecting this insight, the analysis has been restricted to computations in which speculative
sequences of transitions happen at most once.  To achieve this, two additional observation

20

Figure 9. Sample output of the program. It papershows all computations ending in
(B_deleted, B_deleted) that do not contain repetitive transitions and
transitions caused by event “Add_A”



sequences have been added.  

5 Discussion and Conclusions

Although the field of digital forensic science is rapidly maturing, few publications to date
explored the use of formality for analysis and corroboration of digital evidence.  The major
developments include

• a semi-formal classification of uncertainties accompanying digital evidence, and a
method for reasoning about there uncertainties [2];

• the view of digital forensic tools as translators of information between different
layers of abstraction inherent in computer software, and a way of defining such
tools [1];

• the analysis of the possibility of using formal description of file systems for
extracting data from binary images of disk drives [3];

• a demonstration that it is feasible to describe the outcome of investigation using a
rigorous formal notation (colored petri nets) [5].

This paper contributed to this growing body of knowledge a demonstration that event
reconstruction and hypothesis testing in digital investigations can be performed with
mathematical rigor and objectivity.  It provided explicit formalization of the link between the
evidence, the model of digital system, and the possible scenarios of the incident.  Based on
that formalization, it presented an algorithm for computing possible scenarios of the incident
and for testing investigative hypotheses.  These results provide formal basis for the
development and verification of forensic analysis tools.  However, more development is
required for the presented ideas to benefit everyday investigations.  Some of the possible
developments are discussed below.

5.1  Possible applications of the proposed reconstruction approach

The most straightforward application of the proposed event reconstruction approach is the
development of a general-purpose event reconstruction tool along the lines of the program
given in the Appendix.  When using such a tool, the human investigator would provide the
formal description of the digital system, the evidence, and the investigative hypotheses.  The
tool would calculate and visualize possible incident scenarios consistent with the given
formal description.  The rigor offered by such a tool would be welcome in investigations
where reliability and comprehensiveness of event reconstruction are crucial to the success of
subsequent legal action. 

Another possible application of the proposed event reconstruction approach is proving
correctness of existing forensic analysis techniques.  Many advanced digital forensic
techniques can be viewed as special cases of event reconstruction.  For example, the recovery
of deleted files can be viewed as reconstruction of events in the file system up to the moment
when the given file was deleted.  Such specialized event reconstruction can be defined (with
respect to the file system model) by the evidential statement

esx = a0 , a1 , ⋯ , an ,  $ , x , 1, 0  

21



where  x , 1, 0 formalizes the knowledge of the system's final state, and observation
sequences a0 ⋯ an formalize assumptions made by the technique's designers. 
To prove the technique's correctness one should prove that for all possible final states, the
meaning of esx is linked to the technique's output out x according to some well defined
interpretation relation ~R :

forall x , SPResx
~R out x

The interpretation relation  ~R  can be that out x  is equal to some part of SPResx
, or

that it can be derived from SPResx
by some function.  To perform such proofs, a suitable

body of lemmas should be developed.

5.2 Further formalization of event reconstruction

The proposed formalization of event reconstruction has captured the basic sense of event
reconstruction – the reconstruction process must find all possible sequences of events that
agree with the evidence.  Although finding the sequence of events is fundamental, there are
many other characteristics of events that may be interesting to the consumer of investigation.
For example, the consumer might want to know the odds of a particular investigative
hypothesis, or the likely real times of reconstructed events.  To compute answers to such
questions, the formalization of event reconstruction has to be extended with additional
attributes that describe statistical and real-time properties of the system and incident.  The
possibility of such extensions will be researched and published in future papers.

6 References

1. Carrier, B. “Defining Digital Forensic Examination and Analysis Tool Using Abstraction
Layers”, , International Journal of Digital Evidence vol. 1, no. 4, Economic Crime
Institute, at Utica College, Utica, USA, 2003.

2. Casey, E. “Error, Uncertainty and Loss in Digital Evidence” , International Journal of
Digital Evidence vol. 1, no. 2, Economic Crime Institute, at Utica College, Utica, USA,
2002.

3. Geber, M.B., Leeson, J.J. “Shrinking the Ocean: Formalizing I/O Methods Modern
Operating Systems”,  International Journal of Digital Evidence vol. 1, no. 2, Economic
Crime Institute, at Utica College, Utica, USA, 2002.

4. Gansner, E., North,S.C. “An open graph visualization system and its applications to
software engineering”. Software Practice and Experience, 1999.

5. Stephenson, P. “Modeling of Post-Incident Root Cause Analysis”, International Journal of
Digital Evidence vol. 2, no. 2, Economic Crime Institute, at Utica College, Utica, USA,
2003.

22



Appendix

; 1. Helper functions 

; append given suffix to each element 
; of given list.  Return the list of results
(defun combine (lst suff)
  (if (atom lst)
    nil
    (cons (cons (car lst) suff) 
  (combine (cdr lst) suff))))

; append elements of l2 to element of l1
; in all possible combinations
(defun product (l1 l2)
  (if (atom l2)
    nil
    (append (combine l1 (car l2)) (product l1
(cdr l2)))))

; convert each element of given list into
; singleton list 
(defun listify-elements (l) 
  (if (atom l)
    nil
    (cons (list (car l))
          (listify-elements (cdr l)))))

; Test if given object is integer zero or 
; not an integer
(defun zp (x)
  (if (integerp x) (eq x 0) t))

; 2. Transition function 

(defun st (c s)
  (let ((d1 (first s))
        (d2 (second s)))
    (cond ((equal c 'add_A) 
            (if (or (equal d1 'A) 
                    (equal d2 'A))
              s
              (if (or (equal d1 'empty)
                      (equal d1 'A_deleted)
                      (equal d1 'B_deleted))
                (list 'A d2)
                (if (or (equal d2 'empty)
                        (equal d2 'A_deleted)
                        (equal d2 'B_deleted))
                  (list d1 'A)
                  s))))
          ((equal c 'add_B) 
            (if (or (equal d1 'B) 
                    (equal d2 'B))
              s
              (if (or (equal d1 'empty)
                      (equal d1 'A_deleted)
                      (equal d1 'B_deleted))
                (list 'B d2)
                (if (or (equal d2 'empty)
                        (equal d2 'A_deleted)
                        (equal d2 'B_deleted))
                  (list d1 'B)
                  s))))
          ((equal c 'take)
            (if (equal d1 'A)
              (list 'A_deleted d2)
              (if (equal d1 'B)
                (list 'B_deleted d2)
                (if (equal d2 'A)
                  (list d1 'A_deleted)
                  (if (equal d2 'B)
                    (list d1 'B_deleted)
                    s)))))
          (t s))))

; 3. Inverse transition function 

(defun rev-st (s)
  (let ((d1 (first s))
        (d2 (second s)))
    (append
      (if (equal d1 'A_deleted)

        (list (list 'take (list 'A d2)))
        nil)
      (if (equal d1 'B_deleted)
        (list (list 'take (list 'B d2)))
        nil)
      (if (and (not (equal d1 'A)) 
               (not (equal d1 'B))
               (equal d2 'A_deleted))
        (list (list 'take (list d1 'A)))
        nil)
      (if (and (not (equal d1 'A))
               (not (equal d1 'B))
               (equal d2 'B_deleted))
        (list (list 'take (list d1 'B)))
        nil)
      (if (and (or (equal d1 'A_deleted)
                   (equal d1 'B_deleted)
                   (equal d1 'empty))
               (or (equal d2 'A_deleted)
                   (equal d2 'B_deleted)
                   (equal d2 'empty)))
        (list (list 'take s))
        nil)
      (if (and (equal d1 'A)
               (not (equal d2 'A)))
        (list (list 'add_A (list 'empty d2))
              (list 'add_A 
                    (list 'A_deleted d2))
              (list 'add_A 
                    (list 'B_deleted d2)))
        nil)
      (if (and (equal d1 'B)
               (not (equal d2 'B)))
        (list (list 'add_B (list 'empty d2))
              (list 'add_B 
                    (list 'A_deleted d2))
              (list 'add_B 
                    (list 'B_deleted d2)))
        nil)
      (if (and (equal d1 'B)
               (equal d2 'A))
         (list (list 'add_A (list d1 'empty))
               (list 'add_A 
                     (list d1 'A_deleted))
               (list 'add_A 
                     (list d1 'B_deleted)))
         nil)
      (if (and (equal d1 'A)
               (equal d2 'B))
        (list (list 'add_B (list d1 'empty))
              (list 'add_B 
                    (list d1 'A_deleted))
              (list 'add_B 
                    (list d1 'B_deleted)))
        nil)
      (if (or (equal d1 'A) (equal d2 'A))
        (list (list 'add_A s))
        nil)
      (if (and (equal d1 'A) (equal d2 'A))
        (list (list 'add_B s))
        nil)
     (if (and (equal d1 'B) (equal d2 'B))
        (list (list 'add_A s))
        nil)
      (if (or (equal d1 'B) (equal d2 'B))
        (list (list 'add_B s))
        nil))))

; 4. Computations 

; proper value of directory entry
(defun valuep (v)
  (or (equal v 'empty)
      (equal v 'A)
      (equal v 'B)
      (equal v 'B_deleted)
      (equal v 'A_deleted)))

; proper state of print job directory 
(defun statep (s)
  (and (equal (cdr (cdr s)) nil)
       (valuep (first s))
       (valuep (second s))))

; proper event
(defun eventp (e)

23



  (or (equal e 'add_A)
      (equal e 'add_B)
      (equal e 'take)))

; proper computation
(defun cp (c)
  (if (atom c)
    t
    (if (atom (cdr c))
      (and (null (cdr c))
           (eventp (caar c))
           (statep (cadar c)))
      (and (eventp (caar c))
           (statep (cadar c))
           (equal (st (caar c) (cadar c))
                  (cadadr c))
           (cp (cdr c))))))

; Set of all single-step computations
(defvar *ALL-SINGLE-STEP-COMPS* 
  (product 
   '(take add_A add_B) 
    (listify-elements 
     (product 
      '(empty A B B_deleted A_deleted) 
       (listify-elements 
        '(empty A B B_deleted A_deleted)))))))

; 6. Sets of computations
;
; A pattern denotes all computations that
; begin with it.  A set of computations is 
; represented by a list of patterns.

; The set of all single-step patterns
(defvar *ALL-SINGLE-STEP-PATT* 
  (listify-elements *ALL-SINGLE-STEP-COMPS*))

; Checks if given computation c matches 
; given pattern p.
(defun matches (c p)
  (if (atom p)
    t
    (if (atom c)
      nil
      (and (equal (car c) (car p))
           (matches (cdr c) (cdr p))))))

; Checks if given computation matches given
; description 
(defun in (c d)
  (if (atom d)
    nil
    (or (matches c (car d))
        (in c (cdr d)))))

; Intersection of two descriptions
(defun intpp (p1 p2)
  (if (matches p1 p2) 
    (list p1)
    (if (matches p2 p1)
      (list p2)
      nil)))

(defun intpd (p d)
  (if (atom d)
    nil
    (append (intpp p (car d))
            (intpd p (cdr d)))))

(defun intdd (d1 d2)
  (if (atom d1)
    nil
    (append (intpd (car d1) d2)
            (intdd (cdr d1) d2))))

; union of two descriptions
(defun uindd (d1 d2)
  (append d1 d2))

; test for emptiness of a description
(defun emp (d)
  (if (atom d)
    t

    (and (not (cp (car d)))
         (emp (cdr d)))))

; 7. Back-tracing function (psi^-1) 

(defun revcomp (c)
  (if (atom c)
    *ALL-SINGLE-STEP-PATT*
    (combine (rev-st (cadar c)) c)))

; 8. Back tracing function (PSI^-1)

(defun rev (lst)
  (if (atom lst)
    nil
    (append (revcomp (car lst))
            (rev (cdr lst)))))

; 9. Computing the meaning of a fixed-length
;    observation sequence.

; compute explanation of a single-step
; observation sequence
(defun revers (os d)
  (if (emp d)
    nil
    (if (atom os) 
      d
      (revers (cdr os) 
              (intdd (car os) (rev d))))))

; convert fixed-length observation 
; into a list of single-step observations
(defun single-step-obs (p n)
  (if (zp n)
    nil
    (cons p (single-step-obs p (1- n)))))

; convert fixed length observation sequence 
; into single-step observation sequence
(defun single-step-os (fos)
  (if (atom fos) 
    nil
    (append 
      (single-step-obs 
        (first (car fos)) 
        (second (car fos)))
      (single-step-os (cdr fos)))))

; computing meaning of a fixed-length
; observation sequence
(defun solve-fix-os (fos)
  (list 
    (list 
      fos (revers 
            (reverse (single-step-os fos))
            '(nil)))))

; 10. Computing the meaning of a generic 
;     observation sequence

; compute meaning of a list of fixed-length
; observation sequences
(defun solve-fix-os-list (fix-os-list)
  (if (atom fix-os-list)
    nil
    (append 
      (solve-fix-os (car fix-os-list))
      (solve-fix-os-list (cdr fix-os-list)))))

; convert generic observation into a
; set of fixed-length observations

24



(defun fix-obs (p min opt)
  (if (zp opt)
    (list (list p min opt))
    (cons (list p (+ min opt) 0) (fix-obs p min
(1- opt)))))

; convert a generic observation sequence
; into a list of fixed-length observation
; sequences
(defun fix-os (os)
  (if (atom os)
    (list nil)
    (product (fix-obs (first (car os)) (second
(car os)) (third (car os))) 
             (fix-os (cdr os)))))

; calculate meaning of a generic 
; observation sequence
(defun solve-os (os)
  (solve-fix-os-list (fix-os os)))

; 11. Tools for specifying observed properties

; Combs through given list and discards 
; elements, which are not computations
(defun select-comps (l acc)
  (if (atom l)
    acc
    (if (cp (car l))
      (select-comps (cdr l) (cons (car l) acc))
      (select-comps (cdr l) acc))))

; All two-step patterns
(defvar *ALL-TWO-STEP-PATT* 
  (select-comps 
    (product *ALL-SINGLE-STEP-COMPS* 
             *ALL-SINGLE-STEP-PATT*) nil))

; Defines observed property that restricts 
; system state at the moment of observation
;
; This is achieved by 
;   (1) defining a tester function
;   (2) combing tester function through all
;       single-step patterns
;
(defmacro defprop1-helper (const-name 
                           tester-name 
                           vars 
                           body)
  `(progn
     (defun ,tester-name (comp-list acc)
       (if (atom comp-list)
         acc
         (if ((lambda ,vars ,body) 
                (caar comp-list))
          (,tester-name 
             (cdr comp-list) 
             (cons (car comp-list) acc))
          (,tester-name (cdr comp-list) acc))))

     (defvar ,const-name 
       (,tester-name 
          *ALL-SINGLE-STEP-PATT* nil))))

; User interface to defprop1-helper macro.
; It automatically constructs a name for the 
; tester function.
(defmacro defprop1 (name vars body)
  (let 
    ((tester-name 
       (intern
         (concatenate 
           'string 
           (symbol-name name) 
            "-TESTER"))))
   `(defprop1-helper 
      ,name 
      ,tester-name 
      ,vars 
      ,body)))

; Defines observed property that restricts 
; system state at the moment of observation
; AND AT THE FOLLOWING STATE

;
; This is achieved by 
;   (1) defining a tester function
;   (2) combing the tester function 
;       through all two-step patterns

(defmacro defprop2-helper (const-name 
                           tester-name 
                           vars 
                           body)
  `(progn
     (defun ,tester-name (comp-list acc)
        (if (atom comp-list)
          acc
          (if ((lambda ,vars ,body) 
                 (caar comp-list) 
                 (cadar comp-list))
            (,tester-name 
               (cdr comp-list) 
               (cons (car comp-list) acc))
            (,tester-name 
               (cdr comp-list) 
                acc))))

     (defvar ,const-name 
       (,tester-name 
          *ALL-TWO-STEP-PATT* 
          nil))))

; User interface to defprop2-helper macro.
; It automatically constructs a name for the 
; tester function.
(defmacro defprop2 (name vars body)
  (let 
    ((tester-name 
       (intern
        (concatenate 
          'string 
          (symbol-name name) 
          "-TESTER"))))
    `(defprop2-helper 
        ,name 
        ,tester-name 
        ,vars 
        ,body)))

; 12. Combining the meanings of two
;     observation sequences

; Calculates total length of the given 
; fixed-length observation sequence
(defun fos-total-len (fos)
   (if (atom fos) 
     0 
     (+ (second (car fos)) 
        (fos-total-len (cdr fos))))) 

; Takes a partitioned run map (os-chunk) 
; and converts it into a singleton 
; sequence of partitioned run maps 
(defun singleton-es-chunk (os-chunk)
   (list 
      (list (car os-chunk)) 
      (cadr os-chunk)))

; Takes a set of partitioned run maps 
; (os-sol) and converts each element 
; into a singleton sequence of 
; partitioned run maps
(defun singleton-es-sol (os-sol)
   (if (atom os-sol)
     nil
     (cons (singleton-es-chunk (car os-sol))
           (singleton-es-sol (cdr os-sol)))))

; Takes given sequence of partitioned 
; run maps (es-chunk)and combines it with 
; given partitioned run map (os-chunk).  
; Returns either nil -if combination 
; is impossible, or an updated es-chunk.
(defun comb (os-chunk es-chunk)
   (if (equal 
         (fos-total-len (car os-chunk)) 
         (fos-total-len (caar es-chunk)))
     (let 
      ((intersection 

25



          (intdd (cadr os-chunk) 
                 (cadr es-chunk))))
       (if (emp intersection)
         nil
         (list 
           (list 
             (cons (car os-chunk) 
                   (car es-chunk))
             intersection))))
     nil))

; Combines given set of sequences of
; partitioned run maps (es-sol) with 
; the given partitioned run map.
(defun add-chunk-to-sol (es-sol os-chunk)
  (if (atom es-sol)
    nil
    (append 
     (comb os-chunk (car es-sol)) 
     (add-chunk-to-sol (cdr es-sol) 
                       os-chunk))))

; Combines given set of sequences of
; partitioned run maps (es-sol) with the 
; given set of partitioned run maps (os-sol)
(defun add-sol (os-sol es-sol)
   (if (atom os-sol)
     nil
     (append 
       (add-chunk-to-sol es-sol 
                         (car os-sol)) 
       (add-sol (cdr os-sol) es-sol))))

26



; 13 ACME Investigation Analysis 

; OBSERVED PROPERTIES

(defprop1 *B_DELETED* (x) 
  (and 
    (equal (first (second x)) 'B_deleted) 
    (equal (second (second x)) 'B_deleted)))

(defprop1 *EMPTY* (x) 
  (and 
    (equal (first (second x)) 'EMPTY) 
    (equal (second (second x)) 'EMPTY)))

(defprop1 *NO-ADD-A* (x) 
    (not (equal (first x) 'ADD_A)))

(defprop2 *NO-STUTTERING* (x y) 
    (not (equal (second x) (second y))))

(defprop1 *NO-ADD_B-IN-FINAL-STATE* (x) 
    (if (and (equal (first (second x))
                   'B_deleted) 
             (equal (second (second x))
                   'B_deleted))
      (not (equal (first x) 'ADD_B))
      t))

; Infinitum
(defvar *inf* 8)

(defvar *C_T* *ALL-SINGLE-STEP-PATT*)

; COMPUTING THE MEANING OF OBSERVATION 
; SEQUENCES

; Carl's observation sequence
(defvar *A* (solve-os 
   `((,*C_T* 0 ,*inf*) 
     (,*DELETED* 1 0))))

; Manufacturer's observation sequence
 (defvar *E* (solve-os 
  `((,*EMPTY* 1 0)
   (,*C_T* 0 ,*inf*))))

; Alice's Claim
 (defvar *B* (solve-os 
  `((,*NO-ADD-A* 0 ,*inf*)
    (,*DELETED* 1 0))))

; Additional observation sequences that
; control proliferation of possible
; explanations

; Assume that every transition changed 
; the state of the print job directory.
 (defvar *C* (solve-os 
  `((,*NO-STUTTERING* 0 ,*inf*)
    (,*FINAL-STATE* 1 0)))) 

; Assume that Bob did not print anything,
; once the print job directory got into the 
; final state 
(defvar *D* (solve-os 
  `((,*NO-ADD_B-IN-FIN* 0 ,*inf*)
    (,*DELETED* 1 0))))

; COMPUTE THE MEANINGS OF EVIDENTIAL 
; STATEMENTS

; Compute the meaning of the evidential
; statements es_ACME and es'_ACME 
; (with additional restrictions *D* and *E*)

(defvar *SOL-ES-ACME*
  (add-sol 
    *E* 
    (add-sol 
      *D* 
      (add-sol 
        *C* 
        (singleton-es-sol *A*)))))

(defvar *SOL-ES-PRIMED-ACME*
   (add-sol *B* *SOL-ES_ACME*))

27



; 14. Drawing reconstruction results using DOT 

; construct a 'prettified' string that 
; describes a list of objects
(defun pretty (l)
  (if (null l)
    ""
    (if (atom l) (symbol-name l)
      (let ((s (car l)))
        (concatenate 'string 
          (if (symbolp s) 
            (symbol-name s)
              (if (consp s) 
                (concatenate 
                  'string "(" (pretty s) ")")
                " ??? "))
          (if (not (null (cdr l))) 
              ", " 
              "") 
          (pretty (cdr l)))))))

; Constructs an underscore-separated 
; identifier that represents a list of 
; objects -- for use as identifier in DOT 
; file
(defun stringify (l acc)
   (if (atom l)
     acc
     (stringify 
       (cdr l) 
       (concatenate 
          'string 
           acc "_" (symbol-name (car l))))))

; Flatten a tree of objects
(defun flatten (l)
  (if (atom l)
    l
    (if (consp (car l)) 
      (append 
         (flatten (car l)) (flatten (cdr l)))
         (cons (car l) (flatten (cdr l))))))

; Draw a reversed computation 
(defun draw-comp (file comp name1)
   (if (atom comp) nil
      (progn                 ; draw first oval
        (format 
           file 
           "n~A [label=\"~A\"];~%" 
           name1 
           (pretty (cadar comp)))
        (if (atom (cdr comp)) 
          nil
          (let      
            ((name2 
              (concatenate 
                'string 
                name1 
               (stringify 
                 (flatten (cadr comp)) 
                  ""))))
            (progn
             (format        ; draw second oval
                file 
                "n~A [label=\"~A\"];~%" 
                name2 
                (pretty (cadadr comp)))
             (format        ; draw link 
                file 
               "n~A -> n~A [label=\"~A\"];~%" 
              name2 
              name1 
              (symbol-name (car (cadr comp))))
              (draw-comp   ; draw the rest
                 file (cdr comp) name2)))))))

; Draw a list of computations
(defun draw-comps (file comps)
   (if (atom comps)
     nil
     (let ((rv (reverse (car comps))))
       (progn 
         (draw-comp 
             file 
             rv 

             (stringify 
                (cdr (flatten (car rv))) ""))
         (draw-comps file (cdr comps))))))

; Draw computations satisfying evidential
; statement
(defun draw-sol (file es-sol)
   (if (atom es-sol)
     nil
     (progn 
       (draw-comps file (cadar es-sol)) 
       (draw-sol file (cdr es-sol))))) 

; TOP LEVEL FUNCTION

(defun draw (es-sol)
   (with-open-file (f "t.dot"  
                    :direction :output 
                    :if-exists :supersede)
     (format 
        f 
        "strict digraph G { ~% size=\"8,11\";~%
rankdir=LR;~%")
     (draw-sol f es-sol)
     (format f "}~%")
   ))

; 15. Draw the result of reconstruction

; Compute the meaning of the evidential 
; statement that consists of all observation
; sequences without manufacturer's observation
; that defines the initial state of the 
; print job directory

(defvar *SOL* 
  (add-sol 
    *D* 
    (add-sol 
      *C* 
      (add-sol 
        *B* 
        (singleton-es-sol *A*)))))

; draw the result
(draw *SOL*)

28


