
Appendix B

Prefix based representation of

computation sets

This appendix gives formal definition of prefix based representation of

computation sets, discusses its properties, and gives algorithms for

computing set intersection and backtracing of computation sets represented

as lists of prefixes.

B.1 Prefix based representation of

computation sets

A prefix based representation of a computation set is a list

LX = (x0, . . . , x|LX |−1) (B.1)

whose every element is a non-empty computation: xi ∈ CT , and |xi| > 0.

The elements of LX are called prefixes.

The meaning of LX is the set of all computations whose prefixes are

182

APPENDIX B. PREFIX BASED REPRESENTATION OF COMPUTATION SETS

contained in LX :

X =

|LX |−1
⋃

i=0

{ c | c ∈ CT , |xi| ≤ |c|, and for all integer 0 ≤ j < |xi| : cj = (xi)j }

(B.2)

B.2 Basic properties of prefix lists

The following properties follow directly form the equation B.2 and properties

of lists

• c ∈ X if and only if there exists xi such that for all integer 0 ≤ j < |xi|,

cj = (xi)j

• X = ∅ if and only if LX = ε. As a result, set emptiness of X can be checked

in constant time by checking emptiness of LX .

• Let X and Y be computation sets represented by lists LX and LY

respectively, then concatenation LX · LY represents X ∪ Y .

• Let a ∈ CT and b ∈ CT be two prefixes, and let A and B be the sets of

computations represented by (a) and (b) respectively. Observe that

– A ⊆ B if b is a prefix of a

– b ⊆ A if a is a prefix of b

– A and B have no common elements if neither b is a prefix of a, nor a is

a prefix of b.

As a result,

A ∩B =



























A if b is a prefix of a

B if a is a prefix of b

∅ otherwise

183

APPENDIX B. PREFIX BASED REPRESENTATION OF COMPUTATION SETS

Representation of CT With prefix-based representation, the set CT can

be represented by the list

LCT
= (((q0, ι0)) . . . ((q|Q×I|, ι|Q×I|)))

where qi ∈ Q is a state, ιi ∈ I is an event, and there is an element ((qi, ιi)) for

every possible combination of state and event. Since every computation

begins with some state–event pair, it has to be represented by one of the

elements in LCT
.

Clearly, CT has more than one possible representation. Instead of using the

list of all singleton prefixes ((q, ι)) it is possible to use a list that contains all

prefixes of length 2, 3, or any fixed length. The number of elements in such

lists will increase exponentially with the length of prefixes. Observe that the

list of all possible computation prefixes of length m consists of |Q||I|m

elements, because transition function identifies |I| possible next states for

every possible state of the machine.

Representation of a set of computations with restricted prefixes

Consider a set of computations P that restricts only the first m elements of

its member computations:

Pm = { c | c ∈ CT where c0, . . . , cm−1 satisfy condition f(c0, . . . , cm−1)}

A prefix-based representation LPm
of the set Pm can be constructed by listing

all prefixes (c0, . . . , cm−1) that satisfy f(c0, . . . , cm−1). Since Pm ⊆ CT , the

number of elements in LPm
is less or equal than the number of elements in

the representation of CT with prefixes of length m:

|LPm
| ≤ |Q||I|m

184

APPENDIX B. PREFIX BASED REPRESENTATION OF COMPUTATION SETS

1: function IntersectPrefixes(x, y)
2: for i← 0 to min(|x|, |y|) step 1 do
3: if xi 6= yi then
4: return ε
5: end if
6: end for
7: if |x| > |y| then
8: return x . because x ⊂ y
9: else

10: return y . because y ⊆ x
11: end if
12: end function

Figure B.1: Algorithm for computing IntersectPrefixes(x, y)

Set intersection. Observe that, by distributivity of ∩ over ∪ and by the

equation B.2, the intersection of two sets X and Y represented by LX and

LY can be computed as a union of pair-wise intersections of sets represented

by the elements of LX and LY .

Function IntersectPrefixes(x, y) computes a prefix that represents the

intersection of sets represented by its argument prefixes x and y. The

algorithm for computing it is given in Figure B.1. Assuming that all

operations in IntersectPrefixes(x, y) are constant time operations, the worst

case running time of IntersectPrefixes(x, y) algorithm is O(min(|x|, |y|),

because the loop in Figure B.1 iterates at most min(|x|, |y|) times.

The algorithm for computing intersection of sets represented by lists LX and

LY is given in Figure B.2. The running time of this algorithm is proportional

to the lengths of both lists LX and LY and the running time of

IntersectPrefixes(x, y). Since the running time of IntersectPrefixes(x, y) is

bounded by O(min(x, y)), the running time of
⋂

(LX , LY) is bounded by

O(|LX ||LY |m), where m = max(min(xi, yj)))) for all 0 ≤ i < |LX |, and

0 ≤ j < |LY |. Clearly, m is less or equal than the length of the longest prefix

in both LX and LY .

185

APPENDIX B. PREFIX BASED REPRESENTATION OF COMPUTATION SETS

1: function
⋂

(LX , LY)
2: result ← ∅
3: for each prefix x in LX do
4: for each prefix y in LY do
5: z ← IntersectPrefixes(x, y)
6: if z is not empty then
7: result ← result · (z)
8: end if
9: end for

10: end for
11: end function

Figure B.2: Algorithm for computing X ∩ Y

1: function Ψ−1(LX)
2: result ← ∅
3: for each pattern x in LX do
4: q ← the first state in x
5: for each state p and event ι, such that δ(p, ι) = q do
6: Create new prefix x′ ← ((p, ι)) · x
7: result ← result · (x′)
8: end for
9: end for

10: return result
11: end function

Figure B.3: Algorithm for computing Ψ−1(X)

Computing Ψ−1(X). The algorithms for computing Ψ−1(X) using

prefix-based representation of computation sets is given in Figure B.3. It is a

direct implementation of definition of Ψ−1(X) given in Chapter 6. Assuming

that all operations in the algorithm take constant time1, both the running

time and the number of created prefixes are O(|Q||I||LX |), because the outer

loop iterates |LX | times, the inner loop iterates |Q||I| times, and each

iteration of the inner loop produces at most one element of the result.

1 Observe that δ(q, ι) can be implemented as a table lookup.

186

